Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.5, Problem 10.23P
Determine (a) the principal strains at A, (b) the maximum shear strain in the x-y plane, and (c) the absolute maximum shear strain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The state of strain in a plane element is Ex = -300 x 10-6 , Ey= 450 x 10-6, and
Yxy = 275 x 10-6.
(a)
Use the strain transformation equations to determine the equivalent
strain components on an element oriented at an angle of 0 = 30°
counterclockwise from the original position.
(b)
Sketch the deformed element due to these strains within the x-y
plane.
Deformed length of the elongated diagonal.
The strain components, ex= 940 micro strain, ey= -360 micro strain and yxy=830micro strain are given for a point in body subjected to plane strain. Determine;
a. Magnitude of the principal strains
b. The direction of the principal strain axes
c. The maximum in-plane shear strain.
Confirm your answer by means of Mohr's circle of strain and determine the linear strain on an axis inclined at 20 degrees clockwise to the direction of ey
Chapter 10 Solutions
Mechanics of Materials (10th Edition)
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.3 - using Mohrs circle. 103. The state of strain at...Ch. 10.3 - Solve Prob.105 using Mohrs circle. 105. The state...Ch. 10.3 - Solve Prob.108 using Mohrs circle 108. The state...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Determine (a) the principal strains at A, in the...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained from each...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - The principal strains at a point on the aluminum...Ch. 10.6 - A uniform edge load of 500 lb/in. and 350 lb/in....Ch. 10.6 - Prob. 10.45PCh. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - If the material is graphite for which Eg = 800 ksi...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - The A-36 steel pipe is subjected to the axial...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - If a machine part is made of tool L2 steel and a...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 10.65PCh. 10.7 - If a shaft is made of a material for which y = 75...Ch. 10.7 - Solve Prob.1066 using the maximum shear stress...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - Prob. 10.70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - An aluminum alloy is to be used for a solid drive...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 10.82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 10.84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.88PCh. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
How are relationships between tables expressed in a relational database?
Modern Database Management
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The strain components at a point in a body under a state of plane strain are shown in fig. Using Mohr's circle method, 140 u Determine: 66 M 1. Maximum shear strain 2. Principal strains 350 a 350 M 66 M 140 uarrow_forwardplease solve with all stepsarrow_forwardQ.3) A structural member in plane strain has the following strains at a point: & 360 μ , E, = 230 µ, Ky = 150 µ (a) Determine the strains for an element oriented at an angle of 60° counter clockwise. (b) Determine the principal strains and the maximum shear strain using strain transformation equations. (c) Show the result of parts (a) and (b) via sketches of properly oriented elements. Ey Yxy 1 Exarrow_forward
- 4. Show that Cp = as +45°. principal strain and shear strainarrow_forward(a) Determine the shear strain at corner A if the plate distorts as shown by the dashed line. (b) Determine the average normal strain that occurs along the diagonal AC and DB. 5 mm 2 mm 4 mm 2 mm IB 300 mm $2 mm D A 400 mm 3 mmarrow_forwardThe average normal strain and half the maximum in-planeshear strain is determined from the circle as the coordinates. True or false?arrow_forward
- The 60° strain rosette shown below, is mounted on the surface of a thin shell. The following readings are obtained for each gage: Ea = -780 x 10-6 , Eb = 400 × 10-6, and ec= 500 × 10-6. Determine (a) the principal strains (b) the maximum in-plane shear strain and the associated average normal strain. C 60° 60° aarrow_forwardFor the state of a plane strain with Ex, Ey and yxy components: (a) construct Mohr's circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. Ex = 250 x 10-6 Ey = 310 x 10-6 Yxy = -100 × 10-6arrow_forward2. A sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are 0.40 x 10 - in the x direction and 0.30 x 10 in the y direction, determine the stresses in the x and y direction. Also, determine the strain in the z direction. The modulus of elastic and Poisson's ratio of copper is 110 GPa and 0.35 respectively. 3. If the copper in no. 2 is changed into steel with the same dimensions and with a modulus of elasticity of 200 GPa and a Poisson's ratio of 0.30, determine the strains in all direction if the same stresses in no. 2 where to be applied to the steel. €, E,arrow_forward
- A sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are 0.40 x 10 -3 in thex direction and 0.30 x 10-3 in the y direction, determine the stresses in the x and y direction. Also,determine the strain in the z direction. The modulus of elastic and Poisson’s ratio of copper is 110GPa and 0.35 respectively.arrow_forwardThe state of strain in a plane element is ex =-200 x 10-6, Ey = 0, and yxy = 75 × 10-6 , as shown below. Determine the equivalent state of strain which represents (a) the principal strains (b) the maximum in-plane shear strain and the associated average normal strain. Specify the orientation of the corresponding elements for these states of strain with respect to the original element. y Yxy 2 dy Yxy FExdx dxarrow_forwardQ.4) By using the strain rosette shown in figure below, we obtained the following normal strain data at a point on the surface of a machine part made of steel [E = 207 GPa, v= 0.29]: ε-770 μ, E = 520 µ, & = - 435 µ (a) Determine the strain components &, &, and %y at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point using Mohr's circle. (c) Draw a sketch showing the angle Op, the principal strain deformations, and the maximum in-plane shear strain distortions. (d) Determine the magnitude of the absolute maximum shear strain. b ' 60°| 60°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License