Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.7, Problem 10.77P
The 304-stainless-steel cylinder has an inner diameter of 4 in. and a wall thickness of 0.1 in. If it is subjected to an internal pressure of p = 80 psi, axial load of 500 lb, and a torque of 70 lb ft, determine if yielding occurs according to the maximum distortion energy theory.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 304-stainless-steel cylinder has an inner diameter of 4 in. and a wall thickness of 0.1 in.
O
Part A
If it is subjected to an internal pressure of p = 80 psi, axial load of F= 430 lb, and a torque of T = 100 lb-ft, determine if yielding occurs according to the maximum shear stress theory.
O Failure occurs
O Failure does not occur
Submit
Request Answer
Provide Feedback
F
The propellers of a ship are connected to an A-36 steel shaft that is 60 m long and has an outer diameter of 340 mm and inner diameter of 260 mm. If the power output is 4.5 MW when the shaft rotates at 20 rad>s, determine the maximum torsional stress in the shaft and its angle of twist.
The 304-stainless-steel cylinder has an inner diameter of 4 in. and a wall thickness of 0.1 in. If it is subjected to an internal pressure of p = 80 psi, axial load of 500 lb, and a torque of 70 lb · ft, determine if yielding occurs according to the maximum shear stress theory.
Chapter 10 Solutions
Mechanics of Materials (10th Edition)
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.3 - using Mohrs circle. 103. The state of strain at...Ch. 10.3 - Solve Prob.105 using Mohrs circle. 105. The state...Ch. 10.3 - Solve Prob.108 using Mohrs circle 108. The state...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Determine (a) the principal strains at A, in the...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained from each...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - The principal strains at a point on the aluminum...Ch. 10.6 - A uniform edge load of 500 lb/in. and 350 lb/in....Ch. 10.6 - Prob. 10.45PCh. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - If the material is graphite for which Eg = 800 ksi...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - The A-36 steel pipe is subjected to the axial...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - If a machine part is made of tool L2 steel and a...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 10.65PCh. 10.7 - If a shaft is made of a material for which y = 75...Ch. 10.7 - Solve Prob.1066 using the maximum shear stress...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - Prob. 10.70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - An aluminum alloy is to be used for a solid drive...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 10.82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 10.84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.88PCh. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need to figure out what the right answer is.. I dont believe I have the right one selcted!arrow_forwardAn aluminum alloy is to be used for a solid drive shaft such that it transmits 30 hp at 1200 rev>min. Using a factor of safety of 2.5 with respect to yielding, determine the smallest-diameter shaft that can be selected based on the maximum shear stress theory. sY = 10 ksi.arrow_forwardPlease explain the Stress Analysis, Mohr Circle, and Design Theoryarrow_forward
- The drive shaft of a car is designed to be a tube with an outer diameter of 4 in. The engine delivers 190 hp when the shaft is turning at 1200 rpm. The material of the drive shaft has a allowable shear stress of Tallow = 8 ksi. T = a. Determine the magnitude of torque in the shaft, T. b. Determine the minimum required wall thickness of the shaft,t. lbin t = inarrow_forward. The mean diameter of the driving pulley for a vec-belt drive with two belts is 110 mm. The pulley groove angle is 40° and the drive transmits 4.4 kW at a speed of rotation of 1500 rev/min. The coefficient of frietion between belt and pulley 0.32, and the angle of lap is 160°. Determine the driving torque and the maximum stress in the belt material if the cross-sectional area of each belt is 120 mm.arrow_forwardA motor drives a shaft at 300 rpm and a power output of 100 kW. The shaft is made of A-36 steel and has diameter 128 mm. There are two gears at B and C and power is transmitted to them equally. The bearing at D can be taken to be frictionless. Calculate the maximum shear stress in the shaft, and the angle of twist of D relative to A. The lengths are 2 m, L2 = 3 m, and L3 = 3.5 m. L₁ = A B 030/ 2021 Cathy Zupke X ↳₂ The maximum shear stress is Tmax= 60.9 X MPa The angle of twist (in degrees) between A and D is A/D 58.2 O Carrow_forward
- Two sections of steel drill pipe, joined by boltedflange plates at B, are being tested to assess the adequacyof both the pipes. In the test, the pipe structureis fixed at A, a concentrated torque of 500 kN ? m isapplied at x = 0.5 m, and uniformly distributed torqueintensity t0 = 250 kN . m/m is applied on pipe BC.Both pipes have the same inner diameter d = 200 mm.Pipe AB has thickness tAB =15 mm, while pipe BChas thickness tBC =12 mm. Find the maximum shearstress and maximum twist of the pipe and their locationsalong the pipe. Assume G = 75 GPa.arrow_forwardThe state of plane stress at a critical point in a steel machine bracket is shown. If the yield stress for steel is sY = 36 ksi, determine if yielding occurs using the maximum distortion energy theory.arrow_forwardThe 38 mm diameter shaft is made of a steel for which the yield strength is = 250 MPa. Using maximum distortions energy criterion (Von-Mises), determine the magnitude of the torque T for which yield occurs when P = 240 kN.arrow_forward
- The motor A delivers 7500 kW to the shaft at 3600 rev/min, of which 2500 kW is removed by gear B and 5000 kW is removed by gear C. Determine (a) the maximum shear stress in the shaft; and (b) the angle of twist of end D relative to end A. Use G = 83 GPa for steel, and assume that friction at bearing D is negligible. Show complete solution, and the free body diagram.arrow_forwardThe state of stress acting at a critical point on a wrench is shown. Determine the smallest yield stress for steel that might be selected for the part, based on the maximum distortion energy theory.arrow_forwardThe crank is loaded by a single force F, = 200 lb which causes twisting and bending of the 1-in diameter shaft AB fixed to the support. The 2 in shaft is made of hot-rolled AISI 1035 steel. Identify the point with the maximum von Mises stress at end A and find the factor of safety using the distortion-energy theory of 1-in dia. t in in B failure. 5 in 6 in SOLUTION:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license