Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 10.6, Problem 10.48P
If the material is graphite for which Eg = 800 ksi and vg = 0.23, determine the principal strains.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the copper in no. 2 is changed into steel with the same dimensions and with a modulus of elasticity of 200 GPa and a Poisson’s ratio of 0.30, determine the strains in all direction if the same stresses in no. 2 where to be applied to the steel.
Determine the change in length, width and thickness of steel bar which is 4m long, 30mm wide
and 20mm thick and is subjected to an axial pull of 30 kN in the direction of length. Take E = 200
GPa and poison's ratio of 0.3. Also determine the volumetric strain and change in volume.
2. A sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are Ex =
0.40 x 10-3 and ɛy = 0.30 x 10-3, determine ox and oy. Use E = 110 G Pa and v 0.35.
Ox
%3D
Oy
I I|
Chapter 10 Solutions
Mechanics of Materials (10th Edition)
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.3 - using Mohrs circle. 103. The state of strain at...Ch. 10.3 - Solve Prob.105 using Mohrs circle. 105. The state...Ch. 10.3 - Solve Prob.108 using Mohrs circle 108. The state...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Determine (a) the principal strains at A, in the...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained from each...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - The principal strains at a point on the aluminum...Ch. 10.6 - A uniform edge load of 500 lb/in. and 350 lb/in....Ch. 10.6 - Prob. 10.45PCh. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - If the material is graphite for which Eg = 800 ksi...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - The A-36 steel pipe is subjected to the axial...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - If a machine part is made of tool L2 steel and a...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 10.65PCh. 10.7 - If a shaft is made of a material for which y = 75...Ch. 10.7 - Solve Prob.1066 using the maximum shear stress...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - Prob. 10.70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - An aluminum alloy is to be used for a solid drive...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 10.82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 10.84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.88PCh. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A solid spherical ball of magnesium alloy (E = 6.5 × l0-6 psi, v = 0.35) is lowered into the ocean to a depth of 8000 ft. The diameter of the ball is 9.0 in. (a) Determine the decrease ?d in diameter, the decrease, ?V in volume, and the strain energy U of the ball. (b) At what depth will the volume change be equal to 0.0324% of the original volume?arrow_forwardAn element of material in plain strain is subjected to strains x = 0.0015, , y . = -0.0002, and xy = 0.0003. (a) Determine the strains for an element oriented at an angle = 20°. (b) Determine the principal strains of the element. Confirm the solution using Mohr’s circle for plane strain.arrow_forwardAn element of material in plain strain is subjected to shear strain xy = 0.0003. (a) Determine the strains for an element oriented at an angle = 30°. (b) Determine the principal strains of the clement. Confirm the solution using Mohr’s circle for plane strain.arrow_forward
- For a certain metal the strength coefficient K = 600 MPa and the strain hardening exponent n =0.20. During a forming operation, the final true strain that the metal experiences ε = 0.73.Determine the flow stress at this strain and the average flow stress that the metal experiencedduring the operation.arrow_forwardAn element of material in plain strain is subjected to strains epsilon_x=0.0015, epsilon_y=-0.0002, and gama_xy=0.0003. (b) Determine the principal strains of the element. Confirm the solution using Mohr’s circle for plane strain.arrow_forward2. A sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are 0.40 x 10 - in the x direction and 0.30 x 10 in the y direction, determine the stresses in the x and y direction. Also, determine the strain in the z direction. The modulus of elastic and Poisson's ratio of copper is 110 GPa and 0.35 respectively. 3. If the copper in no. 2 is changed into steel with the same dimensions and with a modulus of elasticity of 200 GPa and a Poisson's ratio of 0.30, determine the strains in all direction if the same stresses in no. 2 where to be applied to the steel. €, E,arrow_forward
- A sheet of steel is stretched biaxially in the xy-plane. The strains in the sheet are described below. Determine the stresses along the x and y axes. Use E=200 GPa and v=0.28 Ex = 0.4 x 10‐³ Ey = 0.3 x 10‐³arrow_forwardA sheet of copper is stretched biaxially in the xy-plane. If the strains in the sheet are 0.40 x 10 -3 in thex direction and 0.30 x 10-3 in the y direction, determine the stresses in the x and y direction. Also,determine the strain in the z direction. The modulus of elastic and Poisson’s ratio of copper is 110GPa and 0.35 respectively.arrow_forwardNatural rubber is tested in tension to a maximum extension ratio of λ = 3. The Mooney-Rivlin constants for this material are found to be C1 = 0.069 MPa and C2 = 0.125 MPa. Plot the corresponding uniaxial stress vs. extension ratio behavior over the tested range. Derive an expression for the slope of the function, then determine the secant and tangent moduli at 100% strain.arrow_forward
- 2) Find the strains in the 1-2 coordinate system (local axes) in a unidirectional boron/epoxy lamina with 50% fiber volume fraction, if the stresses in the 1-2 coordinate system applied to are ơ1 = 6 MPa, ơ2 =2 MPa, and T12 = -4 MPa. Use the properties of the given unidirectional lamina in the book and assume plane stress conditions for the lamina.arrow_forwardPlease show complete solution with diagram. Thank you! Topic: Generalized Hooke's Lawarrow_forwardThe 45° strain rosette is mounted on the surface of a shell. The following readings are obtained for each gage: Pa = -200(10-6), Pb = 300(10-6), and Pc = 250(10-6). Determine the in-plane principal strains.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License