Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.7, Problem 10.71P
The plate is made of Tobin bronze, which yields at σY = 25 ksi. Using the maximum shear stress theory, determine the maximum tensile stress σx that can be applied to the plate if a tensile stress σy = 1.5σx is also applied.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PLEASE WRITE YOUR COMPLETE SOLUTION AND BOX THE FINAL ANSWER. THANK YOU.
Determine the normal stress and change in length of the aluminum rod if the temperature was raised by 126°C. The 0.5-mm gap exists at 27°C.
The yield stress for a zirconium-magnesium alloy is sY = 15.3 ksi. If a machine part is made of this material and a critical point in the material is subjected to in-plane principal stresses s1 and s2 = -0.5s1, determine the magnitude of s1 that will cause yielding according to the maximum shear stress theory.
The state of stress at a point in a member is shown on the element. Suppose that σx = -50MPa , σy = -120MPa , τxy = -30 MPa .
Determine the normal stress component acting on the plane AB.
σx′=?
Chapter 10 Solutions
Mechanics of Materials (10th Edition)
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.3 - using Mohrs circle. 103. The state of strain at...Ch. 10.3 - Solve Prob.105 using Mohrs circle. 105. The state...Ch. 10.3 - Solve Prob.108 using Mohrs circle 108. The state...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Determine (a) the principal strains at A, in the...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained from each...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - The principal strains at a point on the aluminum...Ch. 10.6 - A uniform edge load of 500 lb/in. and 350 lb/in....Ch. 10.6 - Prob. 10.45PCh. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - If the material is graphite for which Eg = 800 ksi...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - The A-36 steel pipe is subjected to the axial...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - If a machine part is made of tool L2 steel and a...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 10.65PCh. 10.7 - If a shaft is made of a material for which y = 75...Ch. 10.7 - Solve Prob.1066 using the maximum shear stress...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - Prob. 10.70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - An aluminum alloy is to be used for a solid drive...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 10.82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 10.84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.88PCh. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A seamless cylinder of storage capacity of 0.03m3 is subjected to an internal pressure of 21 MPa. The allowable stress in the material of cylinder is 350N/mm².Determine the length of the cylinder if it is twice the diameter of the cylinder.8mm A seamless cylinder of storage capacity of 0.03mᵌis subjected to an internal pressure of 21MPa. The ultimate strength of material of cylinder is 350N/mm².Determine the length of the cylinder if it is twice the diameter of the cylinder.540mmarrow_forwardFor the clevis connection shown, the shear stress in the 0.577-in.-diameter bolt must be limited to 22 ksi. Determine the maximum load P that may be applied to the connection.arrow_forwardA steel structural member (E=30x106 psi, α=6.5x10-6/ºF in a furnace undergoes an increase in temperature of 95ºF while being held rigid at its ends. Determine the resulting stress, σ, in the steel. Looking to verify my answers! Thank youarrow_forward
- бх бу 0 Txy στ Txy Oy In the diagram above, σ = 100 MPa, σ₁ = −27 MPa,, and Try = 40 MPa. Let each rotated plane within the stress cube be labelled by the angle that it makes relative to the original & plane. For this stress state, there is a set of planes which are in compression (σ < 0), and the corresponding values satisfy min < 0 < 0 max. If 0 is normalized to fall on [0°, 360°), what are the values of 0 min and @max ? Omin Өтах оarrow_forwardThe drill shown is jammed in the wall and is subjected to the torque and force shown in the diagram. Determine the normal stress (in MPa) at point A on the cross section of the drill bit at section a−a. What is the transverse shear stress (in MPa) at the same point in the drill bit? What is the torsional stress at the same point in the drill bit?arrow_forwardDetermine the equivalent stress state of an element oriented 30° clockwise with respect to the element illustrated in the figure below.arrow_forward
- 8000 mm3 aluminium cube is stressed in 3 mutually perpendicular direction x,y and z. The stresses in these directions are σx = 50 kPaσy = 80 kPaσz = -100 kPaDetermine the volumetric strain and change in volume. ν is 0.34 and E is 71 GPaarrow_forwardA steel wire 5 m long hanging vertically supports a weight of 1200 kN. Determine the required wire diameter if the stress is limited to 140 MPa and the total elongation must not exceed 4 mm. Neglect the width of the wire and assume E=200 GPa.arrow_forwardFor a steel rod with a circular cross section with a diameter of D = 20 mm, the following is required: 1. Draw a diagram of the longitudinal force 2. Draw a diagram of normal stresses 3. Determine the total elongation of the rod if Е = 2∙10^5 MPa When calculating, take: а = 2 m, b =1.2 m, F=10 кN - The point of application of force! The work must be done on one sheet of A4 paper, which must show: - Using the method of sections to determine the longitudinal forces in the rod. - Draw a diagram of longitudinal forces N - Determination of normal stresses based on the constructed plot of longitudinal forces. - Draw diagram a normal stresses - Determination of the full extension of the rodarrow_forward
- For a steel rod with a circular cross section with a diameter of D = 20 mm, the following is required: 1. Draw a diagram of the longitudinal force 2. Draw a diagram of normal stresses 3. Determine the total elongation of the rod if Е = 2∙10^5 MPa When calculating, take: а = 2 m, b =1.2 m, F=10 кN - The point of application of force! The work must be done on one sheet of A4 paper, which must show: - Using the method of sections to determine the longitudinal forces in the rod. - Draw a diagram of longitudinal forces N - Determination of normal stresses based on the constructed plot of longitudinal forces. - Draw diagram a normal stresses - Determination of the full extension of the rodarrow_forwardThe distribution of stress in an isotropic aluminium machine component is given (in MPa) as: σ₂ = y +2z² - 6 σ₁ = x+z-6 oy σ₂ = 3x+y-13 6: T =3z² -11 xy (i) (ii) =x²-14 Tyz Txz = y² XZ x, y and z are coordinates of a point within the machine component. By taking Young's modulus, E = 70 GPa, Poisson ratio, v= 0.3 and yield stress, Y = 5 MPa, do the following for a point P located at (4, 1, 2): a) Provide the stress and strain tensors. b) Determine all the principal stresses and principal strains. c) Determine if the machine component will fail based on the failure criteria below: Tresca criterion Von Mises criterionarrow_forwardAt a point in the cross-section of an engineering component an element is subject to the following stresses: σx =100MPa σy =45MPa τxy = -50MPa Construct a Mohr’s Stress Circle and hence determine: (a) The Principal Stresses (σ1 & σ2) and the Directions of the Principal Planes (φ1 & φ2) (b) The Maximum Shear Stress (τmax) (c) Find the Normal Stress (σn) acting on a plane at 40 degs anticlockwise from the y-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY