The state of strain at the point on the arm has components of εx = 200 (10−6), εy = −300 (10−6), and γxy = 400(10−6). Use the strain transformation equations to determine the equivalent in-plane strains on an element oriented at an angle of 30° counterclockwise from the original position, Sketch the deformed element due to these strains within the x–y plane.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Mechanics of Materials (10th Edition)
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Vector Mechanics for Engineers: Statics and Dynamics
Fluid Mechanics: Fundamentals and Applications
Vector Mechanics For Engineers
Starting Out with Python (4th Edition)
- The state of strain at a point on the bracket has components of Px = 150(10-6), Py = 200(10-6), gxy = -700(10-6). Use the strain transformation equations and determine the equivalent in-plane strains on an element oriented at an angle of u = 60° counterclockwise from the original position. Sketch the deformed element within the x–y plane due to these strains.arrow_forward(b) A differential element on the bracket as shown in Figure Q1 is subjected to plane strain that has the following components: ex = 150µ, ey = 200μ , γχν = -700μ. By using the strain transformation equations, determine:- The equivalent in-plane strains on an element oriented at an angle 0 = 60° counterclockwise from the original position. (ii) Sketch the deformed element within the x' – y' plane due to these strains. (iii) The stresses on the oriented planes in (i) where the value of elasticity, E = 200 GPa and Poisson's ratio, v = 0.32. (iv) Give your comments on those stresses in (iii) in terms of elastic limit/failure if the material's yield strength in tension/compression is 250 MPa and in shear is 90 MPa.arrow_forwardThe state of plane strain on an element is represented by the following components: Ex =D340 x 10-6, ɛ, = , yxy Ey =D110 x 10-6, 3D180 x10-6 ху Draw Mohr's circle to represent this state of strain. Use Mohrs circle to obtain the principal strains and principal plane.arrow_forward
- For the state of a plane strain with εx, εy and γxy components: (a) construct Mohr’s circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. εx = 255 × 10-6 εy = -320 × 10-6 γxy = -165 × 10-6arrow_forwardThe state of strain at the point on the spanner wrench has components of Px = 260(10-6), P y = 320(10-6), and gxy = 180(10-6). Use the strain transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x–y plane.arrow_forwardA strain gauge that is attached to the surface of a stressed componentgives 3 readings (εa = 310, εb = B=150, εc = C=-300). If the strain gauge is of the 60 degreestype (indicating the angle between each of the gauges), construct a Mohr’s StrainCircle. Gauge A is aligned along the x-axis. Using Mohr’s Strain Circle calculate the:(i) principal strains (ε1, ε2) (ii) principal angles (φ1, φ2) (You should measure these anticlockwise from the y-axis)(iii) maximum shear strain in the plane (γmax)arrow_forward
- For the given plane strain state, use Mohr's circle to determine the strain state associated with the x' and y' axes rotated to θ indicated in the table: \epsilon_x \epsilon_y \gamma_{xy} θ -500\mu 250\mu 120\mu -15°arrow_forwardQ4 A three strain gages have been attached directly to a piston used to raise a medical chair, the strain gages give strains as Ea = 80 µ , Eb = 60 µ and Ec = 20 u . Determine the principal strains and the principal strain directions for the given set of strains. And Compute the strain in a direction -30° (clockwise) with the x axis. 45 Pumparrow_forwardThe state of strain at the point on the support has components of ex = 350( 10-9), ey = 400( 10-6), Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x-y plane. yxy = -675( 10-), Also draw the Mohr Circlearrow_forward
- The state of strain at the point on the gear tooth has components €x = 850(106), €y = 480(106), Yxy = 650(106). Use the strain-transformation equations to determine (a) the in-plane principal strains and (b) the maximum in-plane shear strain and average normal strain. In each case specify the orientation of the element and show how the strains deform the element within the x-y plane.arrow_forwardThe state of strain in a plane element is Ex = -300 x 10-6 , Ey= 450 x 10-6, and Yxy = 275 x 10-6. (a) Use the strain transformation equations to determine the equivalent strain components on an element oriented at an angle of 0 = 30° counterclockwise from the original position. (b) Sketch the deformed element due to these strains within the x-y plane.arrow_forwardQ4 A three strain gages have been attached directly to a piston used to raise a medical chair, the strain gages give strains as ɛa = 80 µ , Ep = 60 µ and Ec = 20 µ . Determine the principal strains and the principal strain directions for the given set of strains. And Compute the strain in a direction -30° (clockwise) with the x axis. a,x A c.y Pumparrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning