Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.6, Problem 10.46P
A single strain gage, placed in the vertical plane on the outer surface and at an angle 60° to the axis of the pipe, gives a reading at point A of EA = −250(10−6). Determine the principal strains in the pipe at this point, The pipe has an outer diameter of 1 in. and an inner diameter of 0.6 in. and is made of C86100 bronze.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 60o strain rosette is mounted on a beam. The following readings are obtained for each gage: ϵa = 650(10-6), ϵb = -550(10-6), and ϵc =470(10‑6). Determine (a) the in-plane principal strains and (b) maximum in plane shear strain.
A rectangular aluminum plate of uniform thickness has a strain gauge at the center. It is placed in a test rig which can apply a biaxial force system along the edges of the plate as shown below. If the measured strains are +0.0005 and +0.001 in the x and y directions respectively,
a) Determine the corresponding stresses set up in the plate and the strain through the thickness, εz. Take E=72 GPa and ν=0.32.
b) Construct the Mohr’s circle for the loaded plate.
c) State the values of the principal stresses.
d) Determine the maximum shearing stresses and the directions of the planes on which they occur.
The state of strain at the point on the gear tooth has
components €x = 850(106), €y = 480(106), Yxy =
650(106). Use the strain-transformation equations to
determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and
show how the strains deform the element within the
x-y plane.
Chapter 10 Solutions
Mechanics of Materials (10th Edition)
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the pin leaf...Ch. 10.3 - The state of strain at the point on the leaf of...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Solve Prob.103 using Mohrs circle. 103. The state...Ch. 10.3 - using Mohrs circle. 103. The state of strain at...Ch. 10.3 - Solve Prob.105 using Mohrs circle. 105. The state...Ch. 10.3 - Solve Prob.108 using Mohrs circle 108. The state...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Determine (a) the principal strains at A, in the...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained for each gage:...Ch. 10.5 - The following readings are obtained from each...Ch. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - Determine the associated principal stresses at the...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - The principal strains at a point on the aluminum...Ch. 10.6 - A uniform edge load of 500 lb/in. and 350 lb/in....Ch. 10.6 - Prob. 10.45PCh. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - A single strain gage, placed in the vertical plane...Ch. 10.6 - If the material is graphite for which Eg = 800 ksi...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - The A-36 steel pipe is subjected to the axial...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - If a machine part is made of tool L2 steel and a...Ch. 10.7 - Solve Prob.1063 using the maximum distortion...Ch. 10.7 - Prob. 10.65PCh. 10.7 - If a shaft is made of a material for which y = 75...Ch. 10.7 - Solve Prob.1066 using the maximum shear stress...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - Prob. 10.70PCh. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - The plate is made of Tobin bronze, which yields at...Ch. 10.7 - An aluminum alloy is to be used for a solid drive...Ch. 10.7 - If a machine part is made of titanium (TI-6A1-4V)...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The components of plane stress at a critical point...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - The 304-stainless-steel cylinder has an inner...Ch. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - Prob. 10.82PCh. 10.7 - If the yield stress for steel is Y = 36 ksi,...Ch. 10.7 - Prob. 10.84PCh. 10.7 - The state of stress acting at a critical point on...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.88PCh. 10.7 - If Y = 50 ksi, determine the factor of safety for...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - If the material is machine steel having a yield...Ch. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 45° strain rosette is mounted on a steel shaft. The following readings are obtained from each gage: Pa = 800(10-6), Pb = 520(10-6), Pc = -450(10-6). Determine the in-plane principal strains.arrow_forwardThe 45° strain rosette is mounted on the surface of a shell. The following readings are obtained for each gage: Pa = -200(10-6), Pb = 300(10-6), and Pc = 250(10-6). Determine the in-plane principal strains.arrow_forwardFor the state of a plane strain with εx, εy and γxy components: (a) construct Mohr’s circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. εx = 255 × 10-6 εy = -320 × 10-6 γxy = -165 × 10-6arrow_forward
- The 45° strain rosette is mounted on the surface of a pressure vessel. The following readings are obtained for each gage: Pa = 475(10-6), Pb = 250(10-6), and Pc = -360(10-6). Determine the in-plane principal strainsarrow_forwardThe strain components for a point in a body subjected to plane strain are εx = -270 με, εy = 730με and γxy = -799 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forwardConsider the given loading on a pipe. A rectangular rosette (45 degree apart) is placed on a point (K) which is located on the half length of the pipe as shown below. Note that the second gage (b) is parallel to the z-axis . When the load is applied, the strain gages read εa=80 µS, εb=60 µS, εc=20 µS. The pipe have an elastic modulus of Est=201 GPa. a. Determine the in-plane principal strains and the principal strain directions for the given set of strains (Use Mohr circle)arrow_forward
- The strain components for a point in a body subjected to plane strain are εx = -480 με, εy = -750με and γxy = -914 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forwardThe strain components ɛx = 466 µE, ɛy = -524 µe, and yxy = -646 µrad are given for a point in a body subjected to plane strain. Determine the angle Op corresponding to the orientation of the principal planes at the point. -12.12° None of the above -17.93° -13.75° -10.36° -16.56°arrow_forwardThe strain at point A on the pressure-vessel wall has components Px = 480(10-6), Py = 720(10-6), gxy =650(10-6). Determine (a) the principal strains at A, in the x9y plane, (b) the maximum shear strain in the x9y plane, and (c) the absolute maximum shear strain.arrow_forward
- Your answer is partially correct. On the free surface of an aluminum [E=10100 ksi; v = 0.35] component, the strain rosette shown was used to obtain the following normal strain data: a=-425 με, ε = -200 με, and ε & εν +575 μɛ. Determine the normal stress that acts along an axis that is rotated at an angle of 0 = 60° counterclockwise from the positive x axis. 60° 60° b a 60° x Determine the normal strains at the point associated with the x and y axes. Answers: Ex = -425 με, ε, Ξ i με.arrow_forwardThe polysulfone block is glued at its top and bottom to the rigid plates. If a tangential force, applied to the top plate, causes the material to deform so that its sides are described by the equation y = 3.56 x1>4, determine the shear strain at the corners A and B.arrow_forwardThe strain components εx, εy, and γxy are given for a point in a body subjected to plane strain. Determine the strain components εn, εt, and γnt at the point if the n-t axes are rotated with respect to the x-y axes by the amount and in the direction indicated by the angle θ. Sketch the deformed shape of the element. εx = -1100 με, εy = 490 με, γxy = 1500 μrad, and θ = 34°.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Lec21, Part 5, Strain transformation; Author: Mechanics of Materials (Libre);https://www.youtube.com/watch?v=sgJvz5j_ubM;License: Standard Youtube License