(a)
Interpretation: To determine the valence electron in argon.
Concept introduction:
The electron configuration of an element defines how its electrons are arranged throughout its atomic orbitals. Standard notation is used to represent atomic electron configurations, placing all electron-containing atomic subshells in sequential order. The number of electrons held by the subshell is indicated by superscript.
(a)
Answer to Problem 113A
8
Explanation of Solution
The outermost electron is considered a valence electron. The electronic configuration of argon is as follows:
The outermost shell has 8 electrons.
Thus, valence electrons in argon are 8.
(b)
Interpretation: To determine valance electrons in aluminum.
Concept introduction:
The electron configuration of an element defines how its electrons are arranged throughout its atomic orbitals. Standard notation is used to represent atomic electron configurations, placing all electron-containing atomic subshells in sequential order. The number of electrons held by the subshell is indicated by superscript.
(b)
Answer to Problem 113A
3
Explanation of Solution
The outermost electron is considered a valence electron. The electronic configuration of argon is as follows:
The outermost shell has 3 electrons.
Thus, valence electrons in argon are 3.
Interpretation: To calculate valence electrons in selenium.
Concept introduction:
The electron configuration of an element defines how its electrons are arranged throughout its atomic orbitals. Standard notation is used to represent atomic electron configurations, placing all electron-containing atomic subshells in sequential order. The number of electrons held by the subshell is indicated by superscript.
Answer to Problem 113A
6
Explanation of Solution
The outermost electron is considered a valence electron. The electronic configuration of argon is as follows:
The outermost shell has 6 electrons.
Thus, valence electrons in argon are 6.
Interpretation: To calculate valence electrons in beryllium.
Concept introduction:
The electron configuration of an element defines how its electrons are arranged throughout its atomic orbitals. Standard notation is used to represent atomic electron configurations, placing all electron-containing atomic subshells in sequential order. The number of electrons held by the subshell is indicated by superscript.
Answer to Problem 113A
1
Explanation of Solution
The outermost electron is considered a valence electron. The electronic configuration of argon is as follows:
The outermost shell has 1 electron.
Thus, valence electrons in argon are 1.
Chapter 8 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Don't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forwardDon't used Ai solutionarrow_forward
- Calculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1arrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY