Concept explainers
In Fig. 6-60, a block weighing 22 N is held at rest against a vertical wall by a horizontal force F of magnitude 60 N. The coefficient of static friction between the wall and the block is 0.55, and the coefficient of kinetic friction between them is 0.38. In six experiments, a second force
Figure 6-60 Problem 90.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Biology: Concepts and Current Issues (8th Edition)
Organic Chemistry (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Biochemistry: Concepts and Connections (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: A Molecular Approach (4th Edition)
- A warehouse worker is pushing a 90.0 kg crate with a horizontal force of 276N at a speed of v = 0.875m/s across the warehouse floor. He encounters a rough horizontal section of the floor that is 0.75 m long and where the coefficient of kinetic friction between the crate and floor is 0.353. (a) Determine the magnitude and direction of the net force acting on the crate while it is pushed over the rough section of the floor. magnitude Ndirection ---Select--- up down in the same direction as the motion of the crate in the opposite direction as the motion of the crate (b) Determine the net work done on the crate while it is pushed over the rough section of the floor. J (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardA rectangular block has a length that is six times its width and a height that is three times its width. The block's surfaces are all identical except for size. When the block is placed on a horizontal tabletop so that the area in contact with the table is length ✕ width, it is found that a horizontal force of 11.6 N applied to the block is just sufficient to overcome the static friction force and cause the block to move. The block is then knocked over so that the area in contact with the table is length ✕ height. Now, what minimum horizontal force will cause the block to move?arrow_forwardA warehouse worker is pushing a 90.0 kg crate with a horizontal force of 300 N at a speed of v = 0.850 m/s across the warehouse floor. He encounters a rough horizontal section of the floor that is 0.75 m long and where the coefficient of kinetic friction between the crate and floor is 0.360. m (a) Determine the magnitude and direction of the net force acting on the crate while it is pushed over the rough section of the floor. magnitude Have you drawn a force diagram and identified all forces acting on the crate? N direction --Select-- X Have you drawn a force diagram and identified all forces acting on the crate? (b) Determine the net work done on the crate while it is pushed over the rough section of the floor. Can you write an expression for the net work done on the crate in terms of the net force acting on the crate? J (c) Find the speed of the crate when it reaches the end of the rough surface. Can you develop an expression for the final speed of the crate in terms of its initial…arrow_forward
- A particle of mass 0.5 kg is at rest on a rough plane inclined at an angle to the horizontal where sin = 3/5. The particle is just prevented fromsliding from the plane by a force of 2 N applied in an upward directionparallel to a line of the greatest slope of the plane.(a) Draw a figure showing all the forces acting on the particle. (b) Calculate the coefficient of friction between the particle and theplane.(c) Calculate by how much the force of 2 N must be increased so thatthe particle is about to move up the plane.arrow_forwardAn object is on earth with a mass of 10.0 kg at the top of a frictionless inclined plane of length 8.00 m and an angle of inclination 30.0° with the horizontal, and with an initial velocity down the plane of 2.0 m/s. The object slides from this position and it stops at a distance d from the bottom of the inclined plane along a rough horizontal surface with friction, as shown. The coefficient of kinetic friction for the horizontal surface is 0.400. (a) What is the speed of the object at the bottom of the inclined plane? (b) At what horizontal distance d from the bottom of the inclined plane will this object stop? Use Work and Energy Principles to solve. Do not use Newton’s laws for constant acceleration: Zero credit if you do not use conservation of energy concepts.arrow_forwardAn object is on earth with a mass of 10.0 kg at the top of a frictionless inclined plane of length 8.00 m and an angle of inclination 30.0° with the horizontal, and with an initial velocity down the plane of 2.0 m/s. The object slides from this position and it stops at a distance d from the bottom of the inclined plane along a rough horizontal surface with friction, as shown. The coefficient of kinetic friction for the horizontal surface is 0.400. (a) What is the speed of the object at the bottom of the inclined plane? (b) At what horizontal distance d from the bottom of the inclined plane will this object stop? Use Newton’s Laws for constant acceleration and Friction Forces to solve. Do not use Conservation of Energy concepts: zero credit if you use Conservation of Energy.arrow_forward
- In space v = (-5) ux + (-3) uy + (4) uz [m / s] speed moving q = 4 [C] load,E = (5) ux + (10) uy + (7) uz and,B= (8) ux+ (9) uy+ (4) uzwhat is the x component of the total force acting on this load [N]?arrow_forwardA block of mass m rests on a plane inclined an angle with the horizontal. A spring with force constant k is attached to the block. The coefficient of static friction between the block and plane is s. The spring is pulled upward along the plane very slowly. (a) What is the extension of the spring the instant the block begins to move? (b) The block stops moving just as the extension of the contracting spring reaches zero. Express k (the kinetic coefficient of friction) in terms of s and .arrow_forwardan object with mass m shown in the figure is attached to a spring with a spring constant k in a horizontal arrangement without friction, and the object is compressed as much as d. After the system is released, the object can rise to the height of h in the friction inclined plane. find the coefficient of kinetic friction between the oblique order and the body?arrow_forward
- A 3.3 kg block is pushed along a horizontal floor by a force F→ of magnitude 23 N at a downward angle θ = 40°. The coefficient of kinetic friction between the block and the floor is 0.23. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block’s acceleration.arrow_forwardA particle of mass m moves in a horizontal plane along the parabola y = 2x². At t=0 it is at the point (1;2) moving in the direction shown with speed vo. Aside from the force of constraint holding it to the path, it is acted upon by the following external forces: Fa = -Ar³ F₁ = B(−y²î + x²ĵ), where A and B are constants. a) Are the forces conservative? b) What is the speed of of the particle when it arrives at the origin? (Assume that the potential energy reference point is 2 at the origin) 10F2 деф OF OF 1(a(rF) OF curlF = ↑ + Ŷ + ra дг дл dr r дг дф Vo 1 xarrow_forwardA 2.20 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 4.83 N and a vertical force are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are µs = 0.4 and µk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of is (a) 8.00 N and (b) 12.0 N. (The upward pull is insufficient to move the block vertically.)arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON