Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 25P
SSM WWW Block B in Fig. 6-31 weighs 711 N. The coefficient of static friction between block and table is 0.25; angle θ is 30°; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The coefficient of static friction between a block of mass
m and an incline is = 0•3. (a) What can be the
maximum angle e of the incline with the horizontal so
that the block does not slip on the plane ? (b) If the incline
makes an angle 8/2 with the horizontal, find the
frictional force on the block.
Calculate P required to move block A upward. Assume the coefficient of friction is 0.2 below block
B. Neglect friction at all other contact surfaces.
30°
P
B
80 lb
H₂ = 0.2
A
120 lb
A particle of mass 6 kg is placed on a rough plane
inclined at an angle a to the horizontal where sin a =
0.8. The coefficient of friction between the particle
and the plane is 0.4. An upward force PN actson the
particle along a line of greatest slope of the plane.
Find
the greatest value of P
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Several depositional features near Drakes Estero are related to the movement of sediment by longshore currents....
Applications and Investigations in Earth Science (9th Edition)
How is the female pelvis adapted for pregnancy and childbirth?
Principles of Anatomy and Physiology
11. Birds and mammals are both endothermic, and both have four-chambered hearts. Most reptiles are ectothermic ...
Campbell Biology: Concepts & Connections (9th Edition)
41. A 15-m-long garden hose has an inner diameter of 2.5 cm. One end is connected to a spigot; 20°C water flows...
College Physics: A Strategic Approach (3rd Edition)
WRITE ABOUT A THEME: ENERGY In a short essay (about 100150 words), discuss how prokaryotes and other members of...
Campbell Biology (11th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A SEWAGE WORKER is inside a large underground aqueduct (diameter » a man’s height) of circular cross section, and so smooth that friction is negligibly small. He has a ladder which is the same length as the diameter of the aqueduct. He wishes to inspect something in the roof. He mounts the ladder and continues to climb until he reaches the other end. What happens?arrow_forward25 sSM www Block B in Fig. 6-31 weighs 711 N. The coefficient of static friction between block and Knot- table is 0.25; angle is 30°; assume that the cord between B and the B. knot is horizontal. Find the maxi- mum weight of block A for which the system will be stationary.arrow_forwardA particle, of mass 6 kg, is in equilibrium on a rough horizontal plane under a force of magnitude T N, which acts at an angle 15 above the horizontal. Given the coefficient of friction between the particle and the rough horizontal plane is 0.35, what values could T take?arrow_forward
- A uniform cube of side length 7.3 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is u. A horizontal pullP is applied perpendicular to one of the vertical faces of the cube, at a distance 6.5 cm above the floor on the vertical midline of the cube face. The magnitude of P is gradually increased. (a) If µ is less than what value will the cube eventually begin to slide? (b) If u is greater than what value will the cube eventually begin to tip? (Hint: At the onset of tipping, where is the normal force located?) (a) Number i Units i Units (b) Numberarrow_forward15-9. The 200-kg crate rests on the ground for which the coefficients of static and kinetic friction are µ, = 0.5 and Hk =0.4, respectively. The winch delivers a horizontal towing force T to its cable at A which varies as shown in the graph. Determine the speed of the crate when 1= 4 s. Originally the tension in the cable is zero. Hint: First determine the force needed to begin moving the crate. T (N) 800 T = 400 2 -t (s) 4arrow_forwardA block of rubber is placed on an adjustable inclined plane and released from rest. The angle of the incline is gradually increased. (a) The block does not move until the incline makes an angle of 428 to the horizontal. Calculate the coefficient of static friction. (b) The block stops accelerating when the incline is at an angle of 358 to the horizontal. Determine the coefficient of kinetic friction.arrow_forward
- Block B in Fig. 6-31 weighs 711 N.The coefficient of static friction between block and table is 0.25; angle u is 30; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.arrow_forwarda block of mass m is initially at rest at the highest point of an inclined plane, which has a height of 6.8 m and has an angle of 0=16 degrees with respect to the horizontal. After it has been released, you perceived it to be moving at v=0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane i sup=0.1 and the coefficient of friction on the horizontal surface its ur=0.2. a)what is the speed of the block, in meters per second, just after it leaves the inclined plane? b)Find the distance, d, in meters.arrow_forwardA uniform cube of side length 5.7 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is u. A horizontal pull P is applied perpendicular to one of the vertical faces of the cube, at a distance 5.1 cm above the floor on the vertical midline of the cube face. The magnitude of P is gradually increased. (a) If μ is less than what value will the cube eventually begin to slide? (b) If u is greater than what value will the cube eventually begin to tip? (Hint: At the onset of tipping, where is the normal force located?) (a) Number i (b) Number i Units Unitsarrow_forward
- A crate of mass m is initially at rest at the highest point of an inclined plane which has a height of 5.28 m and makes an angle of A = 17.2° with respect to the horizontal. After it has been released, it is found to be traveling at v = 0.29 m/s a distance dafter the end of the inclined plane, as shown. The coefficient of kinetic friction between the crate and the plane is tp = 0.1, and the coefficient of friction on the horizontal surface is f4r = 0.2.arrow_forwarda 600 N block rests of a 30 degrees plane. if the coefficient of friction is 0.20 , what is the value of the force, P applied horizontally to keep the block moving up the planearrow_forwardA block of mass m = 1 kg is found on an inclined plane that makes an angle 30° with the horizontal. The coefficient of static friction and coef- ficient of kinetic friction between the block and the incline are: 71, = 0.6 and p, 0.5. Take the positive di rection to be up the inclined plane 130° With the block initially at ret, the acceleration of the block isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY