Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 69P
A student, crazed by final exams, uses a force
Figure 6-52 Problem 69.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 2.20 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 4.83 N and a vertical force are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are µs = 0.4 and µk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of is (a) 8.00 N and (b) 12.0 N. (The upward pull is insufficient to move the block vertically.)
NEWTON'S LAWS WITH FRICTION PH 421
5 0 A 2.5 kg block is initially at rest on a horizontal surface. A
horizontal force F of magnitude 6.0 N and a vertical force P are
then applied to the block (Fig. 6-17). The coefficients of friction for
the block and surface are M,
magnitude of the frictional force acting on the block if the magni-
tude of P is (a) 8.0 N, (b) 10 N, and (c) 12 N.
= 0.40 and H = 0.25. Determine the
%3D
N.
F.
Flg. 6-17 Problem 5.
In Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 6- 28, the magnitude F required of the cord’s force on the sled is plotted versus a range of values for the coefficient of static friction ms between sled and plane: F1 = 2.0 N, F2 = 5.0 N, and m2 = 0.50. At what angle u is the plane inclined?
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Suppose you see a crescent moon; how m...
Cosmic Perspective Fundamentals
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
The mass of 5 mole of iron (III) oxide ( Fe2O3 ) should be calculated. Concept Introduction: Mole is SI unit wh...
Living By Chemistry: First Edition Textbook
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
1.6 Read the labels on products used to wash your dishes. What are the names of some chemicals contained in tho...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- •9 0 A 3.5 kg block is pushed along a horizontal floor by a force F of magnitude 15 N at an angle e = 40° with the horizontal (Fig. 6-19). The coefficient of ki- netic friction between the block Flg. 6-19 Problems 9 and 32. and the floor is 0.25. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's accelération. •10 Figuré 6-20 shows an initially. stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle e= 20°. What is the magni- tude of the acceleration of the Flg. 6-20 Problem 10. www. block across the floor if the friction coefficients are (a) u, = 0.600 and u = 0.500 and (b) , = 0.400 and 4 0.300?arrow_forwardPart (b) Write an expression for the magnitude of the change in the car's height, h, along the y-direction, assuming it travels a distance L down the incline.arrow_forwardIf the 50-kg crate starts from rest and attains a speed of 6 m/s when it has traveled a distance of 15 m, determine the force P acting on the crate. The coefficient of kinetic friction between the crate and the ground is μ = 0.3.arrow_forward
- Two boxes are connected by a rope that passes over a pulley (Figure 6-31). Box #1 is on a ramp inclined at 35° to the horizontal, and the coefficient of kinetic friction between the box and ramp is 0.54. The masses of the boxes are m1 5 2.5 kg and m2 5 5.5 kg. Neglecting the motion of the pulley and assuming that the velocity of each box is in the same direction as its acceleration, what is the magnitude of the acceleration of the boxes?arrow_forwardTo avoid a collision while traveling at a speed of 19 m/sec and descending a steep mountain pass with a grade of 4.3%, a truck locks up all wheels and skids to a stop over a distance of 90 meters. Determine the coefficient of friction between the truck tires and pavement.arrow_forwardBlock A in Fig. 6-56 has mass mA = 4.0 kg, and block B has mass mB 2.0 kg.The coefficient of kinetic friction between block B and the horizontal plane is mk= 0.50.The inclined plane is frictionless and at angle u= 30°.The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.arrow_forward
- An 8 kg block rests on a horizontal surface whose coefficients of friction are: s = 0.4 and k = 0.2. The maximum force that can be applied to the block so that it does not move is?arrow_forwardAt an accident scene on a level road, investigators measure a car's skid mark to be 88m long. The accident was occurred on a rainy day, and the coefficient of kinetic friction was estimated to be 0.46. Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.arrow_forwardThree applied forces, F1 = 20.0 N, F2 = 40.0 N, and F3 = 10.0 N act on an object with a mass of 2.00 kg which can move along an inclined plane as shown in the figure. The questions refer to the instant when the object has moved 0.600 m along the surface of the inclined plane in the upward direction. Neglect friction and use g = 10.0 m/s2.Figure 7-5Refer to Figure 7-5. What is the amount of work done by the force F3 as the object moves up the inclined plane?arrow_forward
- vel Flg. 6-23 Problems 16 and 22. 17 In Fig. 6-24, a force P acts on a block weighing 45 N. The block is initially at rest on a plane inclined at angle 0 15° to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are u, u = 0.34. In unit-vector notation, what is the frictional force on the block from the plane when P is (a) (-5.0 N)i, (b) (-8.0 N)i, and (c) (-15 N)i? 0.50 and 0000arrow_forwardIn Fig. 6-59, block 1 of mass m1 ? 2.0 kg and block 2 of mass m2 ? 1.0 kg are connected by a string of negligible mass. Block 2 is pushed by force F of magnitude 20 N and angle u ? 35°. The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string? (please don't copy-paste solution)arrow_forwardA person steps horizontally off the roof of a single-story house that is 3.1 m high. When his feet hit theground below, he bends his knees such that his torso decelerates over a distance of 0.65 m before coming to astop. If the mass of his torso is 50 kg, what is the average net force exerted on his torso over this distance?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY