Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 39P
Calculate the ratio of the drag force on a jet flying at 1000 km/h at an altitude of 10 km to the drag force on a prop-driven transport flying at half that speed and altitude. The density of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the airplanes have the same effective cross-sectional area and drag coefficient C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the ratio of the drag force on a
business jet flying at 834 km/h at an
altitude of 10 km to the drag force on a
drone flying at 384 km/h at half that
altitude. The density of air is 0.28 kg/m3 at
10 km and 0.57 kg/m3 at 5 km. Assume
that the drone has half the effective
sectional area of the business jet and the
same drag force coefficient.
It is autumn. You look outside a window and see a maple leaf falling face down, in a straight vertical line. You estimate the speed of the leaf to be 25.77 cm/s.
You then pick up the leaf and do measurements. It has a mass of 2.76 g and a cross sectional area of 76 square cm. You measure the density of air to
be 1.298 kg m-³.
What is the drag coefficient between the leaf and the air? (numerical value only)
Number
(Hint: For an object to fall with constant speed, it must be at 'terminal velocity'.)
Calculate the ratio of the drag force on a jet flying at 900 km/h at an altitude of 10 km to the drag force on a prop-driven transport flying at one-fifth the
speed and half the altitude of the jet. The density of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the airplanes have the same
effective cross-sectional area and drag coefficient C.
(drag on jet/drag on transport) =
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is meant by high-throughput in culturing microorganisms? How has it benefited microbiology?
Brock Biology of Microorganisms (15th Edition)
Find the lowest temperature at which it is possible to have water in the liquid phase. At what pressure must th...
Fundamentals Of Thermodynamics
Practice Exercise 1
Which of the following is the correct description of the inside of a grapefruit?
It is a p...
Chemistry: The Central Science (14th Edition)
For each reaction, calculate how many moles of product from when 1.75 mol of the reactant in color completely r...
Introductory Chemistry (6th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
28. The free-fall acceleration on the moon is 1.62 m/s2. What is the length of a pendulum whose period on the m...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A spherical object with a mass of 75 Kg object and radius of 0.5 m is dropped from a plane flying in the sky. Determine the drag coefficient C if the object attains a terminal velocity of 100m/s. Assume the density of air is 1.207kg/m^3arrow_forwardRunning on a treadmill is slightly easier than running outside because there is no drag force to work against. Suppose a 60 kg runner completes a 5.0 km race in 19 minutes. The density of air is 1.20 kg/m3 Determine the drag force on the runner during the race. Suppose that the runner has the cross section area of 0.72 m2 and the drag coefficient of 1.2. What is this force as a fraction of the runner's weight?arrow_forwardKayaking is a great example of multiple drag forces. Where a person has to deal with currents in the water and air to propel themselves forward. In this problem, the water is moving at a velocity of 1.7 m/s directly in the direction you are trying to row. When considering this water, the area in contact with the water is .05 m^2, the drag coefficient is 1.02 with normal water density. You are moving at a velocity of 3 m/s, while the air is blowing against you with a velocity of 2.7 m/s (head wind). For the air, you have an area in contact of .5 m^2, and a drag coefficient of 1.75. Normal air density is present. In order to accomplish your time goal, you need a net force propelling you downstream of 175 newtons, how much force are you applying with the paddle to achieve this goal?arrow_forward
- A tennis ball (typical mass 57.5 g) flying through the air may be affected by air resistance. The drag force applied to the ball can be approximated as: F drag C₁pAv² Where: Fdrag Drag force (N) Cd = Coefficient of drag, which for a tennis ball is around 0.55 p = The density of air, which at ground level at 25°C is around 1.2 A = The presented area of the tennis ball in the direction of travel, around 3500 mm² v = The velocity (by convention in the positive direction) in m/s (a) Draw a free-body diagram of the tennis ball during flight, including air resistance. Also include a separate vector showing the direction of travel (v) at an arbitrary angle (theta) from horizontal. (b) Write Newton's second law for the x and y directions, and from this state the first-order differential equations (in each coordinate) that govern the motion of the tennis ball The tennis ball is at a vertical height of 1.4 m above the ground when it is struck with a racquet. The initial velocity as it leaves the…arrow_forwardThe terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find the terminal velocity (in m/s) of a(n) 60-kg skydiver falling in a pike (headfirst) position with a surface area of 0.246 m². The drag coefficient for this position can be taken as 0.606. Refer to the textbook for the proper expression for terminal velocity.arrow_forwardCallie is running a 400 m race around a 400 m track. On the backstretch her velocity is 8 m/s, but she is running into a 2 m/s headwind. How large is the drag force that acts on Callie? Assume that the density of the air is 1.2 kg/m3, that Callie’s cross-sectional area is 0.5 m2, and that her coefficient of drag is 1.1.arrow_forward
- The drag force, D, on a plate moving with a velocity of (40.0 ± 0.2) km/h through air of density p = ( 1.200 ±0.010) kg/m3, with a surface area of (100.00 ± 0.5mm) x (30.00 ± 0.05cm) is given by D = Cd p AV² where Ca= 2.1 is a non-dimensional constant. What is the drag force D? 30.00 cm 100.00mm O D = 9.33 ± 0.233 N D = 8.9±0.2kg D =0.89±0.22 N D = 9.33 ± 2.33 x 101 N D = 9.3 ± 0.2 Narrow_forwardTo maintain a constant speed, the force provided by a car's engine must equal the drag force plus the force of friction of the road (the rolling resistance). The density of air is 1.2 kg/m. (a) What are the drag forces in newtons at 75 km/h and 104 km/h for a Toyota Camry? (Drag area = 0.70 m? and drag coefficient = 0.28.) at 75 km/h at 104 km/h (b) What are the drag forces in newtons at 75 km/h and at 104 km/h for a Hummer H2? (Drag area = 2.44 m2 and drag coefficient = 0.57.) at 75 km/h at 104 km/h N Additional Materialsarrow_forwardThe mass of a sports car is 1100 kg. The shape of the car is such that the aerodynamic drag coefficient is 0.250 and the frontal area is 2.20 m2. Neglecting all other sources of friction, calculate the initial acceleration of the car, if it has been traveling at 80 km/h and is now shifted into neutral and is allowed to coast. (Take the density of air to be 1.295 kg/m3.) Answer:_____m/s2arrow_forward
- A cup cake liner with a mass of 0.397 g, cross section area A = 42.3 cm² and a drag coefficient of D = 0.644 is dropped from rest. Find the magnitude of its terminal velocity in m/s. Use g=9.806 m/s² and an air density of 1.20 kg/m³. Enter the number only, without the unit.arrow_forwardLike friction, drag force opposes the motion of a particle in a fluid; however, drag force depends on the particle's velocity. Find the expression for the particle's velocity v(x) as a function of position at any point x in a fluid whose drag force is expressed as Fdrag = kmv where k is a constant, m is the mass of the particle and v is its velocity. Assume that the particle is constrained to move in the x-axis only with an initial velocity v0. Solution: The net force along the x-axis is: ΣF = -F = m then: -mv = m Since acceleration is the first time derivative of velocity a = dv/dt, -mv = m We can eliminate time dt by expressing, the velocity on the left side of the equation as v = dx/dt. Manipulating the variables and simplifying, we arrive at the following expression / = -k "Isolating" the infinitesimal velocity dx and integrating with respect to dx, we arrive at the following: = v0 - which shows that velocity decreases in a linear manner.arrow_forwardA 50-kg box is resting on a horizontal floor. A force of 250 N directed at an angle of 30.0° below the horizontal is applied to the box. The coefficient of static friction between the box and the surface is 0.40, and the coefficient of kinetic friction is 0.30. What is the force of friction on the box?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY