Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 6, Problem 10P
Figure 6-20 shows an initially stationary block of mass m on a floor. A force of magnitude 0.500mg is then applied at upward angle θ = 20°. What is the magnitude of the acceleration of the block across the floor if the friction coefficients are (a) µs = 0.600 and µk = 0.500 and (b) µs = 0.400 and µk = 0.300?
Figure 6-20 Problem 10.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A dated box of dates, of mass 7.1 kg, is sent sliding up a frictionless ramp at an angle of e to the horizontal. The figure here gives, as a function of time t, the component
Vy of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
(m/s)
4
2
(s)
-2
Number
64.86
Unit
the tolerance is +/-2%
Click if you would like to Show Work for this question: Open Show Work
SHOW HINT
e to search
林
10:44 PM
ENG
4/4/2021
13 )
16
17
tohome
%23
3
7.
W
E
R.
T.
5
vel
Flg. 6-23 Problems 16 and 22.
17 In Fig. 6-24, a force P acts on a block weighing 45 N. The
block is initially at rest on a plane inclined at angle 0 15° to the
horizontal. The positive direction of the x axis is up the plane. The
coefficients of friction between block and plane are u,
u = 0.34. In unit-vector notation, what is the frictional force on
the block from the plane when P is (a) (-5.0 N)i, (b) (-8.0 N)i,
and (c) (-15 N)i?
0.50 and
0000
A 2.20 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 4.83 N and a vertical force are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are µs = 0.4 and µk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of is (a) 8.00 N and (b) 12.0 N. (The upward pull is insufficient to move the block vertically.)
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain the wide annual range of temperatures in Siberia.
Applications and Investigations in Earth Science (9th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following correctly lists...
Cosmic Perspective Fundamentals
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
8. A particle with the potential energy shown in FIGURE Q10.8 is moving to the right at x = 5 m with total ener...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Factors determining a shape of molecule are to be described. Concept Introduction : The bonded electron pairs o...
Living By Chemistry: First Edition Textbook
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the 50-kg crate starts from rest and attains a speed of 6 m/s when it has traveled a distance of 15 m, determine the force P acting on the crate. The coefficient of kinetic friction between the crate and the ground is μ = 0.3.arrow_forwardA skier starts from rest at the top of a hill that is inclined 10.5°with respect to the horizontal. The hillside is 2.00 x 102 m long,and the coefficient of friction between snow and skis is 0.075 0.At the bottom of the hill, the snow is level and the coefficientof friction is unchanged. How far does the skier glide along thehorizontal portion of the snow before coming to rest?arrow_forwardNEWTON'S LAWS WITH FRICTION PH 421 5 0 A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force F of magnitude 6.0 N and a vertical force P are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are M, magnitude of the frictional force acting on the block if the magni- tude of P is (a) 8.0 N, (b) 10 N, and (c) 12 N. = 0.40 and H = 0.25. Determine the %3D N. F. Flg. 6-17 Problem 5.arrow_forward
- In the figure, a force P acts on a block weighing 45.0 N. The block is initially at rest on a plane inclined at angle = 18.0° to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are μ = 0.540 and Uk = 0.340. In unit-vector notation, what is the frictional force on the block from the plane when Pis (a) (-5.30 N)î, (b) (-8.10 N)î, and (c) (-15.1 N)? (a) Number i (b) Number i (c) Number i i+ i+ i i i+ i j Units j Units j Unitsarrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.855 m/s encounters a rough horizontal surface of length ℓ = 0.65 m. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 277 N on the crate, find the magnitude and direction of the net force on the crate while it is on the rough surface.arrow_forwardA 12 kg block of ice slides down a ramp 10 m long, inclined at 18° to the horizontal. (a) If the coefficient of kinetic friction between the ice and the ramp is 0.10, what is the acceleration of the block of ice? (b) What is the final speed of the ice at the bottom of the ramp? 18°arrow_forward
- A block with mass m = 6 kg is being pulled on a frictionless horizontal surface by a force F a distance OA = d. This force has a magnitude F = 10 N and a direction 0 = 30° above the horizontal. If the speeds at points O and A are vo = 2 m/s and VA = 5 m/s respectively, then the distance OA-d covered by the block will be equal to: F 0 = 30° Vo = 2 m/s O 20.785 m 34.594 m 13.653 m 3.637 m 7.275 m O d = ? VA Aarrow_forwardA 12 kg box is released from the top of an incline that is 5 m long and makes an angle of 40 degrees to the horizontal. The friction force between the box and the incline is 60 N. What is the coecient of kinetic friction µk between the box and the incline?arrow_forwardAt an accident scene on a level road, investigators measure a car's skid mark to be 102m long. The accident was occurred on a rainy day, and the coefficient of kinetic friction was estimated to be 0.36. Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes.arrow_forward
- Three applied forces, F1 = 20.0 N, F2 = 40.0 N, and F3 = 10.0 N act on an object with a mass of 2.00 kg which can move along an inclined plane as shown in the figure. The questions refer to the instant when the object has moved 0.600 m along the surface of the inclined plane in the upward direction. Neglect friction and use g = 10.0 m/s2.Figure 7-5Refer to Figure 7-5. What is the amount of work done by the force F3 as the object moves up the inclined plane?arrow_forwardTom reached a speed of 29 m/s in the downhill skiing competition. Suppose he left the slope at that speed and then slid freely along a horizontal surface. If the coefficient of kinetic friction between his feet and the ground was 0.27 and his final speed was half of his initial speed, find the distance he traveled?arrow_forwardA block with mass m starting from rest at point A is sliding down a rough incline with kinetic coefficient of friction µ. The incline has angle 0 with respect to the horizontal sur- face. As the block slides down for a distance O 1. KB = m gs cos 0 – µ mgs cos 0 8, it passes point B. O 2. KB = mgs sin 0 + µ m gs sin 0 O 3. KB = mgs cos0 – µm gs sin 0 m O 4. KB = mgs sin 0 + µ mgs cos 0 v =0 O 5. KB = mgs sin 0 – µm g s sin 0 m О6. Кв — тgs sin@ — дтдs cos® B O 7. KB = m gs cos 0 + µ mgs cos 0 O 8. KB = m gs cos 0 + µ mgs sin 0 Find the kinetic energy of the block as it passes B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY