
Concept explainers
In Fig. 6-12, if the box is stationary and the angle θ between the horizontal and force
Figure 6-12 Question 1.

To find:
Whether the following quantities increase, decrease, or remain the same when an applied force is directed downward at an angle
(a)
(b)
(c)
(d)
(e) And, whether the magnitude of the frictional force on the box increases, decreases, or remains the same if the angle θ is increased.
Answer to Problem 1Q
Solutions:
(a) The value of horizontal force
(b)
(c) The value of the normal force
(d)
(e) The friction force increases when the box slides and the angle between the surface and box also increases.
Explanation of Solution
Concepts
If the block slides, then kinetic frictional force is given by
Explanations:
Given Data:
In the problem (a) to (b): the box is stationary and the angle
Note: It is clear from Fig. 6-12, the angle
Formula used:
The free-body depiction for the inclined slope is provided below.
From Fig. (6-19) of the textbook and the free body diagram, we can draw:
No acceleration in the first case (from (a) to (d)) as the box is in the stationary position. Hence, acceleration is zero.
Applying Newton’s 2nd law on the y-axis:
If the block slides, the kinetic frictional force:
If it does not slide, then the magnitude of maximum static friction:
Calculations: To find the magnitude of the different forces and their nature (increasing, decreasing, or no-change) when the angle (
(a) The horizontal component of the force is
(b) If a body does not move, the static frictional force and the component parallel to the surface are equal in magnitude, and is directed opposite that component. If the component decreases,
(c) The normal component of the force is given in Eq. (1).
The normal component of the force is
(d) From Eq. (3), the magnitude of the maximum static friction will also increase as
(e) In the sliding scenario, kinetic friction force can be explained by Eq. (2). This results in an increase in the kinetic frictional force. Thus, the friction force increases when the box slides and the angle between the surface and box increases.
Conclusion
If the value of the normal force
Want to see more full solutions like this?
Chapter 6 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Chemistry: A Molecular Approach (4th Edition)
Chemistry: Structure and Properties (2nd Edition)
Cosmic Perspective Fundamentals
Campbell Biology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?arrow_forwardHi, I have canceled, why did you charge me again?arrow_forwardNo chatgpt pls will upvotearrow_forward
- For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forward
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





