Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 33P
SSM A 1000 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn’t need to carry any fuel. The force on IKAROS’s sails was measured to be 1.12 mN. If this were the only force acting on the 290 kg spacecraft, by how much would its speed increase after 6 months of flight?
A boat is being towed at a rate of 20 kph. At the instant (t-0) that the towing line is cast off, a
man in the boat begins to row in the direction of motion exerting a force of 90 N. If the
combined mass of the man and boat is 225 kg, and the resistance (R) is equal to 26.25 v, where
v is measured in mps, find the speed of the boat after ½ min.
A 2.75 kg ball is dropped straight down on a concrete floor and bounces straight up. At an instant when the ball is in contact with the floor, its acceleration is 34.0 m·s−2 upward. At that instant, calculate the force on the ball that is exerted by the floor.
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
18. SCIENTIFIC THINKING By measuring the fossil remains of Homo floresiensis, scientists have estimated its wei...
Campbell Biology: Concepts & Connections (9th Edition)
A satellite follows the elliptical orbit shown in FIGURE P12.77. The only force on the satellite is the gravita...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1090 kg boat is traveling at 92 km/h when its engine is shut off. The magnitude of the frictional force ?→?f→k between boat and water is proportional to the speed v of the boat: fk = 85v, where v is in meters per second and fk is in newtons. Find the time required for the boat to slow to 46 km/h.arrow_forwardA 15kg-particle moves in xyz-plane experience a force of F=12N i - 20N j + 10N k . Determine the acceleration vector of the particle.arrow_forwardA 1250 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force fk between boat and water is proportional to the speed v of the boat. Thus, fk = 80v, where v is in meters per second and fk (the magnitude of the frictional force) is in newtons. Find the time required for the boat to slow down to 45 km/h.arrow_forward
- A particle of mass m moves in a horizontal plane along the parabola y = 2x². At t=0 it is at the point (1;2) moving in the direction shown with speed vo. Aside from the force of constraint holding it to the path, it is acted upon by the following external forces: Fa = -Ar³ F₁ = B(−y²î + x²ĵ), where A and B are constants. a) Are the forces conservative? b) What is the speed of of the particle when it arrives at the origin? (Assume that the potential energy reference point is 2 at the origin) 10F2 деф OF OF 1(a(rF) OF curlF = ↑ + Ŷ + ra дг дл dr r дг дф Vo 1 xarrow_forwardA railroad car which has a mass 9216 kg is constrained to move along a horizontal track under the action of a wind blowing in the direction of the track. The frictional resistance to the car motion is 1/200 of its weight. The force exerted by wind is P=kSu2, where S is the area of the backside of the railroad car, equals to 6 m2, and u is the velocity of the wind relative to car, k=0.12. The absolute velocity of the wind is w=12 m/s. The initial velocity of the railroad car is 0. Determine:a) the maximum velocity vmax of the railroad car;b) the time T taken to reach this velocity;c) the distance x, travelled by the railroad car before reaching a velocity of 3 m/sarrow_forwardChapter 05, Problem 010 GO A 0.180 kg particle moves along an x axis according to x(t) = - 14.0 + 2.00 t + 4.00 2- 5.00 t, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.30 s ? Give an expression for the (a) x, (b) y and (c) z components. (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER powered by MapleNet ere to search 1:51 PM ENG 4/4/2021 ASUS 19home prt sc pause break delete f10 end f1Pgup f12Pgdn insert & 21 4. 8 backspo-arrow_forward
- Problem 18: A particle of mass 0.61 kg begins at rest and is then subject to a force in the positive x direction that changes with time as given by the following function: F = mg[1-e-3.1t ], where g is the acceleration due to gravity. Δv = 19.38 Determine the change in x-coordinate of the particle Δx between t = 0 and t = 2.3.arrow_forward1 2 B → ✰ S 1 4 https://mapleton.instructure.com/courses/16703/assignments/300550 1 point A 1kg flower is pushed by a force of 1N. How fast (in m/s2)does it accelerate? Type your answer... A Submit For these questions, assume that the acceleration due to gravity (g) on Earth is 10 m/s². Also assume that there is no friction or air resistance acting on any of these systems. E 1 point A 23kg statue sits on a table. What is the statue's weight in Newtons? Type your answer... 2 1 point A speeding car is pulled over by a police cruiser. If the car started at 60 m/s and stopped in 20 seconds. If the car has a mass of 1,800Kg, how much force (in Newtons) was exerted by the car's breaks? Type your answer... 3 1 point A moose pushes a 10kg rock, accelerating it from rest to 10m/s in 1 second (This is an acceleration of 10m/s2). What was the applied force in Newtons? Type your answer... Return 4arrow_forwardA force in the +x+x-direction with magnitude F(x)=18.0N−(0.530N/m)xF(x)=18.0N−(0.530N/m)x is applied to a 7.10 kgkg box that is sitting on the horizontal, frictionless surface of a frozen lake. F(x)F(x) is the only horizontal force on the box. 1. If the box is initially at rest at x=0x=0, what is its speed after it has traveled 14.0 mm ? Express your answer to three significant figures and include the appropriate units.arrow_forward
- A particle of mass 5.70 kg moves in the horizontal xy plane. The only force acting on the particle with component in the xy plane has expression (in newtons) F =4.70x2ı^, where x is in meters. Assume that the particle's trajectory is a straight line from the position (in meters) r0=2.10ı^ +2.10ȷ^ to the position (in meters) rf=6.50ı^ +2.10ȷ^. Also consider that its speed at position r0 has a magnitude of 3.80 m/s. Calculate the magnitude (in m/s) of the particle's velocity at position rf. Give your answer to three significant figures. (only numbers)arrow_forwardA dated box of dates, of mass 7.1 kg, is sent sliding up a frictionless ramp at an angle of e to the horizontal. The figure here gives, as a function of time t, the component Vy of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp? (m/s) 4 2 (s) -2 Number 64.86 Unit the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT e to search 林 10:44 PM ENG 4/4/2021 13 ) 16 17 tohome %23 3 7. W E R. T. 5arrow_forwardThe resistance of air to the motion of bodies in free fall depends on many factors, such as the size of the body and its shape, the density and temperature of the air, and the velocity of the body falling through the air. A useful assumption, only approximately true, is that the resisting force takes the form FR = -kủ, where k is a constant whose value in any particular case is determined by factors other than velocity. Consider free fall of an object released from rest. (a) Show that Newton's second law gives d²y = mg dy k- dt та — тg — ku which is equivalent to m dt2 (b) What are the dimensions of k, in terms of mass (M), length (L), and time (T)? (c) Show that the body ceases to accelerate when it reaches a velocity vr = mg/k called the terminal velocity. (d) Prove, by substitution into the equation of part (a), that the velocity varies with time as v = vr (1 – e-kt/m) (e) Make sketches of v(t) and y(t). Describe any significant features of your sketches.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY