Concept explainers
An 85.0 kg passenger is made to move along a circular path of radius r = 3.50 m in uniform circular motion. (a) Figure 6-40a is a plot of the required magnitude F of the net
Figure 6-40 Problem 50.
Trending nowThis is a popular solution!
Chapter 6 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
Anatomy & Physiology (6th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
Fundamentals Of Thermodynamics
- A satellite orbits a planet of unknown mass in a circle of radius 2.1 x 107 m. The magnitude of the gravitational force on the satellite from the planet is F = 95 N. (a) What is the kinetic energy of the satellite in this orbit? (b) What would F be if the orbit radius were increased to 3.2 x 107 m?arrow_forwardA roller-coaster car has a mass of 1120 kg when fully loaded with passengers. As the car passes over the top of a circular hill of radius 21 m, its speed is not changing. (a) At the top of the hill, what is the normal force (using the negative sign for the downward direction) FN on the car from the track if the car's speed is v = 7.6 m/s? (b) What is EN if v = 19 m/s? Use g=9.81 m/s².arrow_forwardA block of mass m = 10.5 kg rests on an inclined plane with a coefficient of static friction of µ, = 0.11 between the block and the plane. The inclined plane is L = 6.9 m long and it has a height of h = 3.3 m at its tallest point. Write an expression, in terms of 0, the mass m, the coefficient of static friction u, and the gravitational constant g, for the magnitude of the force due to static friction, F, just before the block begins to slide. Will the block slide?arrow_forward
- An automobile moves on a level horizontal road in a circle of radius 30 m. (i.e. the road is flat, not banked) The coefficient of friction between tires and road is 0.50. The maximum speed with which this car can round this curve, and the direction of the frictional force is: (note: you may use g = 10 m/s/s) 10 m/s; radially inward 10 m/s; radially outward 12 m/s; radially inward 12 m/s; radially outward 14 m/s; radially inward 14 m/s; radially outward Not enough information is given.arrow_forwardThe moon has a mass of 7.35 x 1022 kg and a radius of 1.738 x 10° m. At what speed must a rocket be launched from the surface of the moon so as not to fall back to the moon?arrow_forwardAt the surface of planet X, a 1 kg object weighs 4 N (planet radius R=106m). A space probe passes by planet X with the nearest point (A) at 8R from the center. When the probe was very far away it had a speed of sqrt(2gxR), where gx is the acceleration of gravity at the planet surface. Find a value for the speed of this probe when it is at point A, vA.arrow_forward
- A carousal has a radius R=7 m, with cables tying the seats being L=10 m long. What should be the speed of the seats so that the cables make an angle of A= 19 degrees with the vertical.arrow_forwardA car of mass 800 kg moves on a circular track of radius 40 m. if the coefficient of friction is 0.5, then maximum velocity with which the car can move is. (a) 7 m/s (b) 14 m/s (c) 8 m/s (d) 12 m/sarrow_forwardA block with mass m is placed on the top of a smooth cline. The cline is h=4.3m high. The block is released from the cline and the moves across a horizontal surface. The region of the horizontal surface between A and B is tough and the kinetic friction coefficient is u = 0.47 and the distance between A and B is 0.6 meters. The remained region of the horizontal surface is smooth. Then the block goes to a quarter circle with radius R = 2.1m, The quarter circle is also smooth. Finally, the block collide elastically with an identical mass, and the second mass flies from the quarter circle and hits the ground. When the block hits the ground what is the horizontal distance does it move in meters since it flies from the quarter circle?(g 9.81m s-2. Round to the nearest hundredth.) h R A B my marrow_forward
- A block with mass m is placed on the top of a smooth cline. The cline is h=4.7m high. The block is released from the cline and the moves across a horizontal surface. The region of the horizontal surface between A and B is tough and the kinetic friction coefficient is μ = 0.47 and the distance between A and B is 0.6 meters. The remained region of the horizontal surface is smooth. Then the block goes to a quarter circle with radius R = 2.1m, The quarter circle is also smooth. Finally, the block collide elastically with an identical mass, and the second mass flies from the quarter circle and hits the ground. When the block hits the ground what is the horizontal distance does it move in meters since it flies from the quarter circle?(g = 9.81m-s-2 Round to the nearest hundredth.)arrow_forwardAn accelerometer C is mounted to the side of the roller-coaster car and records a total acceleration of 3.9g as the empty car passes the bottommost position of the track as shown. If the speed of the car at this position is 190 km/h and is decreasing at the rate of 16 km/h every second, determine the radius of curvature p of the track at the position shown. Answer: p= i V Co- 3 0.96 m Varrow_forwardA skateboarder with mass m, = 44 kg is standing at the top of a ramp which is h, = 3.9 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is v= 6.7 m/s. Part (b) The ramp makes an angle e with the ground, where 0 = 30°. Write an expression for the magnitude of the friction force, f, between the ramp and the skateboarder. cos(e) sin(e) 8 HOME a 5 6 1 2 3 h, P . END m, + Vf vol BACKSPACE CLEAR Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vfonto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgras; in newtons, between the skateboarder and the grass. Fgrazs =arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON