Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 35P
ILW The two blocks (m = 16 kg and M = 88 kg) in Fig. 6-38 are not attached to each other. The coefficient of static friction between the blocks is µs = 0.38, but the surface beneath the larger block is friction-less. What is the minimum magnitude of the horizontal force
Figure 6-38 Problem 35.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
9.3 m
➖➖➖➖➖➖➖➖➖
12 m
Firefighter 8.4 m
up ladder
X cm 1/3 up the ladder
2. As an extension of sample problem 9-7 (done in class) where the firefighter goes
up the ladder, assume that the firefighter can go up the ladder 70% of its length
(8.4 m) before the ladder slips. What is the coefficient of static friction, µs, between
the bottom of the ladder and the ground (3 sig figs.)?
A uniform cube of side length 7.3 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is u. A
horizontal pullP is applied perpendicular to one of the vertical faces of the cube, at a distance 6.5 cm above the floor on the vertical
midline of the cube face. The magnitude of P is gradually increased. (a) If µ is less than what value will the cube eventually begin to
slide? (b) If u is greater than what value will the cube eventually begin to tip? (Hint: At the onset of tipping, where is the normal force
located?)
(a) Number
i
Units
i
Units
(b)
Number
A uniform cube of side length 5.7 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is u. A
horizontal pull P is applied perpendicular to one of the vertical faces of the cube, at a distance 5.1 cm above the floor on the vertical
midline of the cube face. The magnitude of P is gradually increased. (a) If μ is less than what value will the cube eventually begin to
slide? (b) If u is greater than what value will the cube eventually begin to tip? (Hint: At the onset of tipping, where is the normal force
located?)
(a) Number i
(b) Number i
Units
Units
Chapter 6 Solutions
Fundamentals of Physics Extended
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
Assume that a DRT value for autoclaving a culture is 1.5 minutes. How long would it take to kill all the cells ...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
4 In Figure P23.4, what is the current in the wire above the junction? Does charge How toward or away from the ...
College Physics: A Strategic Approach (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box is placed at one end of a 2.00-m plank. That end of the plank is slowly raised until the box begins to slide. How much time does it take the box to slide to the other (bottom) end of the plank? The coefficients of static and kinetic friction between the box and the plank are, respectively, μs=0.400 and μk=0.200.arrow_forwardA woman holds a book by placing it between her hands such that she presses at right angles to the front and back covers. The book has a mass of m = 1.7 kg and the coefficient of static friction between her hand and the book is μs = 0.59. Force minimum?arrow_forwarda 55 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.20 m, and the center of mass of the climber is a horizontal distance d = 0.40 m from the fissure. The coefficient of static friction between hands and rock is m1 = 0.40, and between boots and rock it is m2 = 1.2. (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) For the horizontal pull of (a), what must be the vertical distance h between hands and feet? If the climber encounters wet rock, so that m1 and m2 are reduced, what happens to (c) the answer to (a) and (d) the answer to (b)?arrow_forward
- Problem 12: A box slides down a plank of length d that makes an angle of 0 with the horizontal, as shown. The kinetic and static coefficients of friction are µk and us, respectively. Omin = 1 Part (a) Enter an expression for the minimum angle at which the box, if initially at rest, will begin to slide. ^^^ 4 acotan(us) atan(us) cos(a) ( ) 7 8 9 cos(p) cos(0) sin(a) 5 6 sin(o) sin(0) 0 α 1 2 3 Mk d t Hints: 0% deduction per hint. Hints remaining: 2 Submit m Hint + * 0 BACKSPACE DEL HOME Feedback END CLEAR I give up! Feedback: 0% deduction per feedback. m 0 Part (b) Enter an expression for the nonconservative work done by kinetic friction as the block slides down the plank. Assume the box starts from rest, and is large enough that it will slide down the plank. the angle Part (c) For a plank of any length, at what angle, in degrees, will the final speed of the box at the bottom of the plank be 0.51 times the final speed of the box when there is no friction present? Assume μ = 0.39.arrow_forwardA 5.0kg crate is tasting on a horizontal plank. The coefficient of static friction is 0.50. You raise one end of the plank slowly. What is the maximum angle (with horizontal) you can go without the crate sliding down the incline?arrow_forwardIn the figure a 57 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.15 m, and the center of mass of the climber is a horizontal distance d = 0.30 m from the fissure. The coefficient of static friction between hands and rock is μ1 = 0.35, and between boots and rock it is μ2 = 1.30. The climber adjusts the vertical distance h between hands and feet until the (identical) pull by the hands and push by the feet is the least that keeps him from slipping down the fissure. (He is on the verge of sliding.) (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) What is the value of h?arrow_forward
- A uniform box is placed in a position along the inclined plane which makes an angle θ from the horizontal. Coefficient of static friction µ = 0.4. What should be the maximum value of angle θ so that the box would remain at rest?arrow_forwardA 50-N block, on a 30° incline, is being held motionless by friction. The coefficient of static friction between the block and the plane is 0.60. The force due to friction is: 50 N O 25 N 500 N 100 N O 250 Narrow_forwardIn the figure a 60 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.30 m, and the center of mass of the climber is a horizontal distance d = 0.20 m from the fissure. The coefficient of static friction between hands and rock is μ₁ = 0.30, and between boots and rock it is μ2 = 1.10. The climber adjusts the vertical distance h between hands and feet until the (identical) pull by the hands and push by the feet is the least that keeps him from slipping down the fissure. (He is on the verge of sliding.) (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) What is the value of h? <311 h com (a) Number i Units = (b) Number i Units =arrow_forward
- A large box of mass 11.4 kg sits on a ramp that makes an angle of 30.1 degrees with the horizontal. The surface of the ramp is rough and the coefficients of static and kinetic friction are given as 0.56 and 0,38, respectively. We exert a force up the ramp (parallel to the ramp surface) so that the box does not move. Calculate the maximum and the minimum magnitude of the force we can exert so that the box does not move. Enter the difference between the maximum and the minimum force values here: Fmax-Fmin (in Newtons). On your paper, show all the forces on free-body diagrams, clearly show your work, your derivation and calculations. Make sure to include your physics-based reasoning.arrow_forwardIn the figure a 51 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width w = 0.30 m, and the center of mass of the climber is a horizontal distance d = 0.30 m from the fissure. The coefficient of static friction between hands and rock is µ₁ = 0.40, and between boots and rock it is µ2 = 1.10. The climber adjusts the vertical distance h between hands and feet until the (identical) pull by the hands and push by the feet is the least that keeps him from slipping down the fissure. (He is on the verge of sliding.) (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) What is the value of h? (a) Number Units (b) Number Units comarrow_forwardIn the figure, a climber leans out against a vertical ice wall that has negligible friction. Distance a is 0.925 m and distance L is 2.15 m. His center of mass is distance d = 0.95 m from the feet-ground contact point. If he is on the verge of sliding, what is the coefficient of static friction between feet and ground? com a x HsNumber i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY