a.
To find: the local extrema of the given function.
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 20E
The given function has no local extrema.
Explanation of Solution
Given:
Calculation:
Consider the given function,
Differentiating with respect to
Here, the derivative cannot be zero for any real value of
So there are no critical values for the given function.
Hence the given function has no local extrema.
b.
To find: the intervals in which the given function is increasing.
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 20E
There is no interval in which the given function is increasing.
Explanation of Solution
Given:
Concept used:
The function increases in the interval at which the first derivative is positive.
Calculation:
Consider the given function,
Differentiating with respect to
Now the function increases in the interval for which,
It is not possible for any real value of
Hence there is no interval in which the given function is increasing.
c.
To find: the intervals in which the given function is decreasing.
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 20E
The given function is decreasing in the interval
Explanation of Solution
Given:
Concept used:
The function decreases in the interval at which the first derivative is negative.
Calculation:
Consider the given function,
Differentiating with respect to
Now the function decreases in the interval for which,
It is true for all the real values of
Hence the given function is decreasing in the interval
Chapter 4 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- Find the equation of the tangent line to the graph of the given function at the given value of x. 6 f(x) = x(x² - 4x+5)*; x=2arrow_forwardFind the equation of the tangent line to the graph of the given function at the given value of x. f(x)=√√x+33; x=4arrow_forwardFind g[f(-7)]. f(x) = x² + 1; g(x)=-5x-1arrow_forward
- Find the x-values where the following do not have derivatives.arrow_forwardLet f(x)=7x²-2x and g(x) = 5x+3. Find f[g(k)].arrow_forwardExpress the integrand as a sum of partial fractions and evaluate the integral. 2 32s+ 32 (s²+1) (s-1)3 ds Express the integrand as a sum of partial fractions. (Simplify your answer.)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)