Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
6th Edition
ISBN: 9781418300203
Author: Prentice Hall
Publisher: Prentice Hall
Question
Book Icon
Chapter 4, Problem 3RE

a.

To determine

To find: To find the increasing intervals for the function y = x2e1x2 .

a.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is increasing at [-1, 0) and [1, ) .

Explanation of Solution

Given information: The given function is y = x2e1x2

Formula used: Product rule: ddx = u'v + uv'

Calculation:

The above equation is rewritten as,

  y = x2e1x2= x2ex-2

Using the product rule finding the derivative for the above equation,

  ddx = u'v + uv'

  y'  = 2xex-2+ x2ex-2-2x-3y'  = 2xex-2 - 2xex-2

Simplifying to get,

  2xex-2 - 2xex-2 = 02ex-2x - 1x = 02ex-2 = 0 or x - 1x = 0

Since 2ex-2  0 , there is no critical value for this factor.

  x - 1x = 0x2 - 1 = 0x = ±1

Therefore, the critical values are x = -1, 0 and 1 .

The possible intervals for the critical values are (-, -1], [-1, 0), (0,1] or [1, )

Now testing the above intervals to determine the increasing functions,

Take x = -2 for (-, -1]

  y(-2) = 2e(-2)-2-2 - 1-2 -2.568 < 0

Take x = -0.5 for [-1, 0)

  y(-0.5) = 2e(-0.5)-2-0.5 - 1-0.5 382.187 > 0

Take x = 0.5 for (0,1]

  y(0.5) = 2e(0.5)-20.5 - 10.5 -382.187 < 0

Take x = 2 for [1, )

  y(2) = 2e(2)-22 - 122.568 > 0

Therefore, the function is then increasing for [-1, 0) and [1, ) .

b.

To determine

To find: To find the decreasing intervals for the function y = x2e1x2 .

b.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is decreasing at (-, -1] and (0, 1) .

Explanation of Solution

Given information: The given function is y = x2e1x2

Calculation:

The given function is,

  y = x2e1x2

By using product and chain rule,

  x2e1/x2'=x2'e1/x2 + x2e1/x2'= 2xe1/x2 + x2  e1/x2x-2'= 2xe1/x2 + x2e1/x2  (-2)x-3= 2xe1/x2 - 2xe1/x2= 2e1/x2x - 1x=2e1/x2x2-1x=2e1/x2(x - 1)(x + 1)x

The factor 2e1/x2 is always positive.

The value of y' depends on the expression (x - 1)(x + 1)x

By entering any value from the observed period into the expression and noting the sign, the sign of over four intervals are

    x(-, -1)(-1, 0)(0, 1)(1, )
    y'++

Therefore, the function is then decreasing for (-, -1) and (0, 1) .

c.

To determine

To find: To find the concave up for the function y = x2e1x2 .

c.

Expert Solution
Check Mark

Answer to Problem 3RE

The function is concave up for (-, 0)  (0, ) .

Explanation of Solution

Given information: The given function is y = x2e1x2

Calculation:

The above equation is rewritten as,

  y = x2e1x2= x2ex-2

Using the product rule finding the derivative for the above equation,

  ddx = u'v + uv'

  y'  = 2xex-2+ x2ex-2-2x-3y'  = 2xex-2 - 2xex-2

Simplifying to get,

  y' = 2xex-2 - 2x-1ex-2y' = 2ex-2x - x-1

To find the second derivative,

  y'' = 2ex-2-2x-3x - x-1 + 1 + x-2y'' = 2ex-2-2x-2 + 2x-4 + 1 + x-2y'' = 2ex-2 (1 - x-2 + 2x-4)y'' = 2ex-21 - 1x2 + 2x4= 2ex-2x4-x2+2x4

To find the value of x , put y'' = 0

  x4 - x2 + 2x4 = 0x4 - x2 + 2 = 0x4 - x2 = -2x4 - x2 + 14 = -2 + 14x2 - 122 = -74x2 - 12 = ±-74

As a result, there are no x values because this has no real solutions.

Substitute the value less than 0 and greater than 0 to see the intervals where it is concave up

  y''(-1) = 2e(-1)-2(-1)4 - (-1)2 + 2(-1)4 10.873 > 0y''(1) = 2e(1)-2(1)4 - (1)2 + 2(1)4 10.873 > 0

The function y'' > 0 for x > 0 and x < 0

Therefore, the function is concave up for (-, 0)  (0, ) .

d.

To determine

To find: To find the concave down for the function y = x2e1x2 .

d.

Expert Solution
Check Mark

Answer to Problem 3RE

The function does not have concave down intervals.

Explanation of Solution

Given information: The given function is y = x2e1x2

Calculation:

The above equation is rewritten as,

  y = x2e1x2= x2ex-2

Using the product rule finding the derivative for the above equation,

  ddx = u'v + uv'

  y'  = 2xex-2+ x2ex-2-2x-3y'  = 2xex-2 - 2xex-2

Simplifying to get,

  y' = 2xex-2 - 2x-1ex-2y' = 2ex-2x - x-1

To find the second derivative,

  y'' = 2ex-2-2x-3x - x-1 + 1 + x-2y'' = 2ex-2-2x-2 + 2x-4 + 1 + x-2y'' = 2ex-2 (1 - x-2 + 2x-4)y'' = 2ex-21 - 1x2 + 2x4= 2ex-2x4-x2+2x4

To find the value of x , put y'' = 0

  x4 - x2 + 2x4 = 0x4 - x2 + 2 = 0x4 - x2 = -2x4 - x2 + 14 = -2 + 14x2 - 122 = -74x2 - 12 = ±-74

As a result, there are no x values because this has no real solutions.

Substitute the value less than 0 and greater than 0 to see the intervals where it is concave up

  y''(-1) = 2e(-1)-2(-1)4 - (-1)2 + 2(-1)4 10.873 > 0y''(1) = 2e(1)-2(1)4 - (1)2 + 2(1)4 10.873 > 0

The function y'' > 0 for x > 0 and x < 0

Therefore, the function does not have intervals at concave down.

e.

To determine

To find: To find the local extreme values for the function y = x2e1x2 .

e.

Expert Solution
Check Mark

Answer to Problem 3RE

The local extreme values have local minimums at (-1, e) and (1, e) .

Explanation of Solution

Given information: The given function is y = x2e1x2

Calculation:

The above equation is rewritten as,

  y = x2e1x2= x2ex-2

Using the product rule finding the derivative for the above equation,

  ddx = u'v + uv'

  y'  = 2xex-2+ x2ex-2-2x-3y'  = 2xex-2 - 2xex-2

Simplifying to get,

  2xex-2 - 2xex-2 = 02ex-2x - 1x = 02ex-2 = 0 or x - 1x = 0

Since 2ex-2  0 , there is no critical value for this factor.

  x - 1x = 0x2 - 1 = 0x = ±1

Therefore, the critical values are x = -1, 0 and 1 .

The possible intervals for the critical values are (-, -1], [-1, 0), (0,1] or [1, )

Now testing the above intervals to determine the increasing functions,

Take x = -2 for (-, -1]

  y'(-2) = 2e1(2)2x - 1-23.9 < 0

Take x = -0.5 for [-1, 0)

  y'(-0.5) = 2e1(0.5)2x - 1-0.5163.8 > 0

Take x = 0.5 for (0,1]

  y'(0.5) = 2e1(0.5)2x - 10.5163.8 < 0

Take x = 2 for [1, )

  y'(2)  =  2e1(2)2x - 123.9 > 0

For all the values of x , there is a local extrema for y .

The value of y' changes from negative and positive values at x = -1 and x = 1 

So, there will be local minimum values.

To find the value of y- coordinate evaluate y at x = -1 and x = 1 

  y(-1) = (-1)2e1(1)2= ey(1) = (1)2e1(1)2= e

Therefore, the local extreme values have local minimums at (-1, e) and (1, e) .

f.

To determine

To find: To find the inflection points for the function y = x2e1x2 .

f.

Expert Solution
Check Mark

Answer to Problem 3RE

The function does not have inflection points.

Explanation of Solution

Given information: The given function is y = x2e1x2

Calculation:

The above equation is rewritten as,

  y = x2e1x2= x2ex-2

Using the product rule finding the derivative for the above equation,

  ddx = u'v + uv'

  y'  = 2xex-2+ x2ex-2-2x-3y'  = 2xex-2 - 2xex-2

Simplifying to get,

  y' = 2xex-2 - 2x-1ex-2y' = 2ex-2x - x-1

To find the second derivative,

  y'' = 2ex-2-2x-3x - x-1 + 1 + x-2y'' = 2ex-2-2x-2 + 2x-4 + 1 + x-2y'' = 2ex-2 (1 - x-2 + 2x-4)y'' = 2ex-21 - 1x2 + 2x4= 2ex-2x4-x2+2x4

To find the value of x , put y'' = 0

  x4 - x2 + 2x4 = 0x4 - x2 + 2 = 0x4 - x2 = -2x4 - x2 + 14 = -2 + 14x2 - 122 = -74x2 - 12 = ±-74

As a result, there are no x values because this has no real solutions.

Substitute the value less than 0 and greater than 0 to see the intervals where it is concave up

  y''(-1) = 2e(-1)-2(-1)4 - (-1)2 + 2(-1)4 10.873 > 0y''(1) = 2e(1)-2(1)4 - (1)2 + 2(1)4 10.873 > 0

Since y'' > 0 for x > 0 and x < 0 , the function is concave up for (-, 0)  (0, ) .

Therefore, the function does not have any point of inflection.

Chapter 4 Solutions

Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020

Ch. 4.1 - Prob. 11QRCh. 4.1 - Prob. 12QRCh. 4.1 - Prob. 1ECh. 4.1 - Prob. 2ECh. 4.1 - Prob. 3ECh. 4.1 - Prob. 4ECh. 4.1 - Prob. 5ECh. 4.1 - Prob. 6ECh. 4.1 - Prob. 7ECh. 4.1 - Prob. 8ECh. 4.1 - Prob. 9ECh. 4.1 - Prob. 10ECh. 4.1 - Prob. 11ECh. 4.1 - Prob. 12ECh. 4.1 - Prob. 13ECh. 4.1 - Prob. 14ECh. 4.1 - Prob. 15ECh. 4.1 - Prob. 16ECh. 4.1 - Prob. 17ECh. 4.1 - Prob. 18ECh. 4.1 - Prob. 19ECh. 4.1 - Prob. 20ECh. 4.1 - Prob. 21ECh. 4.1 - Prob. 22ECh. 4.1 - Prob. 23ECh. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Prob. 30ECh. 4.1 - Prob. 31ECh. 4.1 - Prob. 32ECh. 4.1 - Prob. 33ECh. 4.1 - Prob. 34ECh. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - Prob. 40ECh. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.1 - Prob. 45ECh. 4.1 - Prob. 46ECh. 4.1 - Prob. 47ECh. 4.1 - Prob. 48ECh. 4.1 - Prob. 49ECh. 4.1 - Prob. 50ECh. 4.1 - Prob. 51ECh. 4.1 - Prob. 52ECh. 4.1 - Prob. 53ECh. 4.1 - Prob. 54ECh. 4.1 - Prob. 55ECh. 4.2 - Prob. 1QRCh. 4.2 - Prob. 2QRCh. 4.2 - Prob. 3QRCh. 4.2 - Prob. 4QRCh. 4.2 - Prob. 5QRCh. 4.2 - Prob. 6QRCh. 4.2 - Prob. 7QRCh. 4.2 - Prob. 8QRCh. 4.2 - Prob. 9QRCh. 4.2 - Prob. 10QRCh. 4.2 - Prob. 1ECh. 4.2 - Prob. 2ECh. 4.2 - Prob. 3ECh. 4.2 - Prob. 4ECh. 4.2 - Prob. 5ECh. 4.2 - Prob. 6ECh. 4.2 - Prob. 7ECh. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - Prob. 11ECh. 4.2 - Prob. 12ECh. 4.2 - Prob. 13ECh. 4.2 - Prob. 14ECh. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Prob. 20ECh. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 - Prob. 24ECh. 4.2 - Prob. 25ECh. 4.2 - Prob. 26ECh. 4.2 - Prob. 27ECh. 4.2 - Prob. 28ECh. 4.2 - Prob. 29ECh. 4.2 - Prob. 30ECh. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Prob. 34ECh. 4.2 - Prob. 35ECh. 4.2 - Prob. 36ECh. 4.2 - Prob. 37ECh. 4.2 - Prob. 38ECh. 4.2 - Prob. 39ECh. 4.2 - Prob. 40ECh. 4.2 - Prob. 41ECh. 4.2 - Prob. 42ECh. 4.2 - Prob. 43ECh. 4.2 - Prob. 44ECh. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.2 - Prob. 57ECh. 4.2 - Prob. 58ECh. 4.2 - Prob. 59ECh. 4.2 - Prob. 60ECh. 4.2 - Prob. 61ECh. 4.2 - Prob. 62ECh. 4.2 - Prob. 63ECh. 4.3 - Prob. 1QRCh. 4.3 - Prob. 2QRCh. 4.3 - Prob. 3QRCh. 4.3 - Prob. 4QRCh. 4.3 - Prob. 5QRCh. 4.3 - Prob. 6QRCh. 4.3 - Prob. 7QRCh. 4.3 - Prob. 8QRCh. 4.3 - Prob. 9QRCh. 4.3 - Prob. 10QRCh. 4.3 - Prob. 1ECh. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Prob. 14ECh. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - Prob. 24ECh. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - Prob. 31ECh. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - Prob. 46ECh. 4.3 - Prob. 47ECh. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - Prob. 50ECh. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Prob. 59ECh. 4.3 - Prob. 60ECh. 4.3 - Prob. 1QQCh. 4.3 - Prob. 2QQCh. 4.3 - Prob. 3QQCh. 4.3 - Prob. 4QQCh. 4.4 - Prob. 1QRCh. 4.4 - Prob. 2QRCh. 4.4 - Prob. 3QRCh. 4.4 - Prob. 4QRCh. 4.4 - Prob. 5QRCh. 4.4 - Prob. 6QRCh. 4.4 - Prob. 7QRCh. 4.4 - Prob. 8QRCh. 4.4 - Prob. 9QRCh. 4.4 - Prob. 10QRCh. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - Prob. 14ECh. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - Prob. 19ECh. 4.4 - Prob. 20ECh. 4.4 - Prob. 21ECh. 4.4 - Prob. 22ECh. 4.4 - Prob. 23ECh. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.4 - Prob. 37ECh. 4.4 - Prob. 38ECh. 4.4 - Prob. 39ECh. 4.4 - Prob. 40ECh. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - Prob. 43ECh. 4.4 - Prob. 44ECh. 4.4 - Prob. 45ECh. 4.4 - Prob. 46ECh. 4.4 - Prob. 47ECh. 4.4 - Prob. 48ECh. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - Prob. 51ECh. 4.4 - Prob. 52ECh. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Prob. 55ECh. 4.4 - Prob. 56ECh. 4.4 - Prob. 57ECh. 4.4 - Prob. 58ECh. 4.4 - Prob. 59ECh. 4.4 - Prob. 60ECh. 4.4 - Prob. 61ECh. 4.4 - Prob. 62ECh. 4.4 - Prob. 63ECh. 4.4 - Prob. 64ECh. 4.4 - Prob. 65ECh. 4.5 - Prob. 1QRCh. 4.5 - Prob. 2QRCh. 4.5 - Prob. 3QRCh. 4.5 - Prob. 4QRCh. 4.5 - Prob. 5QRCh. 4.5 - Prob. 6QRCh. 4.5 - Prob. 7QRCh. 4.5 - Prob. 8QRCh. 4.5 - Prob. 9QRCh. 4.5 - Prob. 10QRCh. 4.5 - Prob. 1ECh. 4.5 - Prob. 2ECh. 4.5 - Prob. 3ECh. 4.5 - Prob. 4ECh. 4.5 - Prob. 5ECh. 4.5 - Prob. 6ECh. 4.5 - Prob. 7ECh. 4.5 - Prob. 8ECh. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - Prob. 12ECh. 4.5 - Prob. 13ECh. 4.5 - Prob. 14ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 24ECh. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Prob. 29ECh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Prob. 38ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4.5 - Prob. 45ECh. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.5 - Prob. 49ECh. 4.5 - Prob. 50ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Prob. 53ECh. 4.5 - Prob. 54ECh. 4.5 - Prob. 55ECh. 4.5 - Prob. 56ECh. 4.5 - Prob. 57ECh. 4.5 - Prob. 58ECh. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - Prob. 62ECh. 4.5 - Prob. 63ECh. 4.5 - Prob. 64ECh. 4.5 - Prob. 65ECh. 4.5 - Prob. 66ECh. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Prob. 69ECh. 4.5 - Prob. 70ECh. 4.5 - Prob. 71ECh. 4.5 - Prob. 72ECh. 4.5 - Prob. 73ECh. 4.6 - Prob. 1QRCh. 4.6 - Prob. 2QRCh. 4.6 - Prob. 3QRCh. 4.6 - Prob. 4QRCh. 4.6 - Prob. 5QRCh. 4.6 - Prob. 6QRCh. 4.6 - Prob. 7QRCh. 4.6 - Prob. 8QRCh. 4.6 - Prob. 9QRCh. 4.6 - Prob. 10QRCh. 4.6 - Prob. 1ECh. 4.6 - Prob. 2ECh. 4.6 - Prob. 3ECh. 4.6 - Prob. 4ECh. 4.6 - Prob. 5ECh. 4.6 - Prob. 6ECh. 4.6 - Prob. 7ECh. 4.6 - Prob. 8ECh. 4.6 - Prob. 9ECh. 4.6 - Prob. 10ECh. 4.6 - Prob. 11ECh. 4.6 - Prob. 12ECh. 4.6 - Prob. 13ECh. 4.6 - Prob. 14ECh. 4.6 - Prob. 15ECh. 4.6 - Prob. 16ECh. 4.6 - Prob. 17ECh. 4.6 - Prob. 18ECh. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 21ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - Prob. 24ECh. 4.6 - Prob. 25ECh. 4.6 - Prob. 26ECh. 4.6 - Prob. 27ECh. 4.6 - Prob. 28ECh. 4.6 - Prob. 29ECh. 4.6 - Prob. 30ECh. 4.6 - Prob. 31ECh. 4.6 - Prob. 32ECh. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Prob. 35ECh. 4.6 - Prob. 36ECh. 4.6 - Prob. 37ECh. 4.6 - Prob. 38ECh. 4.6 - Prob. 39ECh. 4.6 - Prob. 40ECh. 4.6 - Prob. 41ECh. 4.6 - Prob. 42ECh. 4.6 - Prob. 43ECh. 4.6 - Prob. 44ECh. 4.6 - Prob. 45ECh. 4.6 - Prob. 46ECh. 4.6 - Prob. 47ECh. 4.6 - Prob. 1QQCh. 4.6 - Prob. 2QQCh. 4.6 - Prob. 3QQCh. 4.6 - Prob. 4QQCh. 4 - Prob. 1RWDTCh. 4 - Prob. 2RWDTCh. 4 - Prob. 3RWDTCh. 4 - Prob. 4RWDTCh. 4 - Prob. 5RWDTCh. 4 - Prob. 6RWDTCh. 4 - Prob. 7RWDTCh. 4 - Prob. 8RWDTCh. 4 - Prob. 9RWDTCh. 4 - Prob. 10RWDTCh. 4 - Prob. 1RECh. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Prob. 21RECh. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 44RECh. 4 - Prob. 45RECh. 4 - Prob. 46RECh. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - Prob. 49RECh. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 57RECh. 4 - Prob. 58RECh. 4 - Prob. 59RECh. 4 - Prob. 60RECh. 4 - Prob. 61RECh. 4 - Prob. 62RECh. 4 - Prob. 63RECh. 4 - Prob. 64RECh. 4 - Prob. 65RECh. 4 - Prob. 66RECh. 4 - Prob. 67RECh. 4 - Prob. 68RECh. 4 - Prob. 69EPCh. 4 - Prob. 70EPCh. 4 - Prob. 71EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning