a.
To Find: the intervals on which the function is increasing using analytical method.
a.
Answer to Problem 15RE
Function
Explanation of Solution
Given:
Function
Concept used:
If the derivative of a function is positive on an interval, then the function is increasing on that interval.
Also, if the derivative of a function is negative on an interval then the function is decreasing on that interval.
Calculation:
Rewrite the function,
First derivative of
Differentiate the
According to a known result
Case 1:- when
So,
Conclusion:
Function
b.
To Find the intervals on which the function is decreasing using analytical method.
b.
Answer to Problem 15RE
Function
Explanation of Solution
Given:
Function
From part (a), first derivative of
Concept used:
If the derivative of a function is positive on an interval, then the function is increasing on that interval.
Also, if the derivative of a function is negative on an interval then the function is decreasing on that interval.
Calculation:
First derivative of
According to a known result
Also, from part (a):
So,
Conclusion:
Function
c.
Find the intervals on which the function is concave up using analytical method.
c.
Answer to Problem 15RE
Function
Explanation of Solution
Given:
Function
First derivative of
Concept used:
If the second derivative of a function is positive on an interval, then the function is concave up on that interval.
Also, if the second derivative of a function is negative on an interval then the function is concave down on that interval.
Calculation:
First derivative of
Second derivative of
Differentiate the
According to a known result
So,
Conclusion:
Function
d.
Find the intervals on which the function is concave down using analytical method.
d.
Answer to Problem 15RE
Function
Explanation of Solution
Given:
Function
First derivative of
Second derivative of
Concept used:
If the second derivative of a function is positive on an interval, then the function is concave up on that interval.
Also, if the second derivative of a function is negative on an interval then the function is concave down on that interval.
Calculation:
Second derivative of
According to a known result
So,
Graph of function
:
Conclusion:
Function
e.
Find the local extreme values using the graph.
e.
Answer to Problem 15RE
Function has
Function has
Explanation of Solution
Given:
Function
Graph of function
Calculation:
According to the graph,
Function has local
Function has local
Conclusion:
Function has local maxima at
Function has local minima at
f.
Find inflection points using the graph.
f.
Answer to Problem 15RE
Inflection point
Explanation of Solution
Given:
Function
Second derivative of
Concept used:
Inflection point: A point of inflection on a curve is a continuous point at which the function changes its concavity.
Calculation:
Second derivative of
For inflection point put
Inflection point
Conclusion:
Inflection point
Chapter 4 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- This question is a previous exam question. I am using it for practice but am stuckarrow_forwardin Q. A firm price of 501: If the Total cast is given by perfect competition sells its products at the TTC = 3Q² +2Q+5. level of output will will be the level of profit at What What Devive the Consumer Curve approach. demand the function maximize this firm's, that using putput level. the indifference prpfit. Q₂. The Total Cost equation in the production of bacon has hypothetical factor a 2 A C= "TC 1000+ 159" +03 ; Where ç. Kash, Bacao - metric bone Compute and 11" tonnes the and average cost at output level of 10. Stretch theme marginal cost of the the shope Carve an the production average, Cost arve 12 tonnes and explain, the relationship between Marginal Cost product es tamen op d Galaxy A71 01 Curve inarrow_forwardif w(x, y, z) = sin' ( xyz) (y zî + x z j + xy k) Find grad (div) at (0.5, 1, 0.5) (xyz)2arrow_forward
- Q2/ verify that grad (hgrad f- f grad h) 1 E = 11 h h₂ where and h are scalar factions.arrow_forward(b) Find the value of each of these sums. Στο 3 • 21 =0 (i) (ii) Σ=1 Σ=023 2arrow_forward(b) For each of the following sets, 6 is an element of that set. (i) {x ER|x is an integer greater than 1} (ii) {x ЄR|x is the cube of an integer} (iii) {6, {6}} (iv) {{6},{6, {6}}} (v) {{{2}}}arrow_forward
- Question 1 Reverse the order of integration to calculate .8 .2 A = = So² Son y1/3 cos² (x²) dx dy. Then the value of sin(A) is -0.952 0.894 0.914 0.811 0.154 -0.134 -0.583 O 0.686 1 ptsarrow_forward3 Calculate the integral approximations T and M6 for 2 x dx. Your answers must be accurate to 8 decimal places. T6= e to search M6- Submit answer Next item Answers Answer # m 0 T F4 F5 The Weather Channel UP DELL F6 F7 % 5 olo in 0 W E R T A S D F G ZX C F8 Score & 7 H FO F10 8 の K B N Marrow_forwardStart with a circle of radius r=9. Form the two shaded regions pictured below. Let f(6) be the area of the shaded region on the left which has an arc and two straight line sides. Let g(6) be the area of the shaded region on the right which is a right triangle. Note that the areas of these two regions will be functions of 6; r=9 is fixed in the problem. 0 f(0) (a) Find a formula for f(6)= | | (b)Find a formula for g(6)= lim ƒ (6) (c) 80 = lim g (0) (d) 80 = lim (e) [f(8)/g(6)]= 0 g(0)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning