University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 40.1, Problem 40.1TYU
Does a wave packet given by Eq. (40.19) represent a stationary state?
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule02:12
Students have asked these similar questions
A three-dimensional wavefunction of a particle is w(r) =exp
kr
Calculate the
i
probability current density.
ħk |Cf
(а)
m r?
欣Icf
(b)
m r?
hk |Cf
(c)
m r?
ħk |Cf
(d)
m r
Answer
A
D
Submit
An electron with total energy En approaches a barrier of height Ub and thickness L . Calculate the transmission coefficient T. Where the energy En= 25.5 eV, Ub=34.005 eV the width L=75 pm is given .
If the particle in the box in the second excited state(i.e. n=3), what is the probability P that it is between x=L/2 and x=L/3 ?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Review Question 8.3 You read the following sentence in a book: In problem solving, put the axis at the place on...
College Physics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
The wavelength of the wave.
Physics: Principles with Applications
Why are cars designed so that their front ends crumple during an accident?
Essential University Physics (3rd Edition)
79. MCAT-Style Passage Problems
Pion Therapy
Subatomic particles called pions are created when protons, acceler...
College Physics: A Strategic Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. The solar nebula was 98% (a) rock and ...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Similar questions
- What is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forwardSuppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardWhat is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forward
- A proton is confined in box whose width is d = 750 nm. It is in the n=3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin^2x over one or more of its cycles is 1/2] PLEASE PLEASE include a sketch of U(x) and Ψ(x)arrow_forwardA three-dimensional wavefunction of a particle is w(r) =–exp -~| kr Calculate the probability current density. ħk |C° (a) mr2 hk |C* (b) mr² hk |C (c) mr- ħk |Cf (d) mrarrow_forwardAt room temperature, the fourth excited state of a microscopic oscillator is 0. 26 eV above the ground state energy. What is the Boltzmann factor for this excited state? Boltzmann factor =arrow_forward
- Use Boltzmann distribution to solve this problem.A system consists of 3, 000 particles that can only occupy two energy levels: a nondegen-erate ground state of 0.052 eV and a threefold degenerate excited state at 0.156 eV. IfT = 900 K,(a) find the number of particles at each energy level.(b) what is the total energy of the system?arrow_forwardDetermine the probability of an electron in the region of x = 0.490L and 0.510L in a box of length L in the energy level n = 1.arrow_forwardConsider an electron trapped in a 1-D box having a length of 1.0 nm. calculate the energy separation between n=1 and n=2 levels.arrow_forward
- A LiBr molecule oscillates with a frequency of 1.7×1013 Hz. (a) What is the difference in energy in eV between allowed oscillator states? (b) What is the approximate value of n for a state having an energy of 1.0 eV?arrow_forwardAn electron confined in a box of width 0.360nm makes a transition from the n = 1 to n = 4 level by absorbing a photon. Calculate the wavelength of this photon.arrow_forwardAn electron is confined to a region of space of length 0.19 nm— comparable in size to an atom. What are the first three allowed energies of the electron?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning