University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.11DQ
To determine
To explain: Whether the zero value of wave function in certain points for the particle in a box mean that the particle can’t move past one of these points.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The ground state wave function for a particle confined to a one-dimensional box of width L is
W(x)=
What is the probability of finding the particle in the central third of the box, L/3
1.
A particle is confined to the x-axis between x = 0 and x = L. The wave function
3π
of the particle is = A sin (²x) + A sin (37 x) with A E R.
4
2L
a.
b.
C.
Determine A.
Determine the probability that the particle is in the interval [0,1].
J
Determine (x).
The smallest observed frequency for a transition
between states of an electron in a one-dimensional box is
3.0 X 10¹3 s¹. What is the length of the box?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- An electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forward2. A particle is confined to the x-axis between x = 0 and x = 3a. The wave function of the particle is = Ax sin (5x). a. b. Determine (x) without determining A. Determine ² = ((x - (x))²) without determining A.arrow_forwardIt can be shown that the allowed energies of a particle of mass m in a two-dimensional square box of sided L are Enl =h2/8mL2 (n2 + l2)The energy depends on two quantum numbers, n and l, both of which must have an integer value 1, 2, 3,........a. What is the minimum energy for a particle in a twodimensional square box of side L?b. What are the five lowest allowed energies? Give your values as multiples of Emin .arrow_forward
- 1. A particle is confined to the x-axis between x = 0 and x = L. The wave function of the particle is = A sin (2x) + A sin (x) with A E R. a. b. C. Determine A. Determine the probability that the particle is in the interval [0,1]. Determine (x).arrow_forwardA particle in a 3-dimensional quadratic box with box length L has an energy given by h² E = (n+n+n). The degeneracies of the first, second, and 8mL² third level are a. e. 1, 2, 3 1, 3, 3 b. 1, 3, 1 c. 3, 3, 3 d. 1, 2, 2arrow_forwardAn electron moves with a speed v 1.25 x 10-4c inside a one-dimensional box (V = 0) of length 48.5 nm. The potential is infi nite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?arrow_forward
- Q3. Consider an infinite potential well of width d. In transitions between neighboring values of n, particles of mass that is in a position state as: 2πχ sin e-iwit d TX f(x. t) = -e-iwot + sin (a) Proof that f (x. t) is still normalized for all value of t. (b) Find the probability distribution P(x.t) = |f(x. t)|²arrow_forwardcan u solve please?arrow_forward3. An electron is trapped in an infinitely deep potential well 0.300 nm in width. a. If the electron is in its ground state, what is the probability of finding it within 0.100 nm of the left-hand wall? b. Repeat a. for an electron in the 99th excited state. c. Are your answers consistent with the correspondence principle?arrow_forward
- To excite an electron in a one-dimensional box from its first excited state to its second excited state requires 23.05 eV. What is the width of the box? Give your answer in nm.arrow_forwardB6arrow_forward7. One electron is trapped in a one-dimensional square well potential with infinitely high sides. a. If you have a probe that has a width for electron detection Ax = 0.00350L in the x direction, for the first excited state ( n =2), what is the probability that the electron is found in the probe when it is centered at x = L/4, (hint: you can use an approximation for this - you do not need to do an integral)? b. What is the average number of electrons that you would detect using the probe described in part "b." centered at x = L/4, ifthe electron is in the first excited state (n = 2) for each experiment and you repeat the experiment N, =100,000 times?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax