University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.8DQ
To determine
To explain: What would be the probability distribution function look like if the particle behave like a Newtonian particle and whether the actual probability distribution approach this classical form when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1. Using the WKB approximation, calculate the energy eigenvalues En of a quantum-
mechanical particle with mass m and potential energy V (x) = V₁ (x/x)*, where V > 0, Express
En as a function of n; determine the dimensionless numeric coefficient that emerges in this
expression.
Given: For sake of simplicity, let us consider a particle with mass, m, in one dimension trapped in an
infinite square well potential. The bottom of the potential well has zero potential energy, and the
particle is known to be confined between 0
3. The classical partition function of a gas of noninteracting indistinguishable particles is written
as
exp{-
N!
2m
Z=
where N is the number of particles of mass m, r, and p, are the position and the momentum of the
ith particle, B = 1/(kpT), and Tis the temperature of the gas. The volume of the gas is V.
(a) Find the analytic expression of the partition function of the gas.
(b) Obtain the total mean energy E of the gas from the partition function.
(c) Obtain the entropy S of the gas from the partition function and the total mean energy.
Lexp(-x³xdx = Va
Hint:
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- Please answer !!arrow_forwardConsider a particle of mass m, located in a potential energy well.one-dimensional (box) with infinite height walls. The wave function that describes this system is:Ψn(x) = K sin (nπx /L), for 0 ≤ x ≤ LΨn(x) = 0 for any other value.K is a constant and n = 1,2,3,... Determine K*K = │K│2arrow_forwardProblem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v EV, 2m dx² with boundary conditions (0) = 0 and V(1) = 0. Second, the Quantum Harmonic Oscillator (QHO) = h² d² +kr²V = EV 2m dg²+ka² 1/ k2²) v (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forward
- 1. Consider a particle in one dimension with amplitude (x) given by V(x) = Aexp 242 Normalize this wavefunction. Hint: use this integral 00 -ax? dx a 2. Consider a particle of momentum p = 96hm-1. Here m stands for the unit meters. What is the probability density of finding it at the position x? 3. Write the wavefunction 6Tx v(x) = A cos as the linear combination of wave-functions of definite momenta (Hint: you need just two states of definite momentum). 4. Normalize the above wavefunction. 5. Plot the wavefunctions corresponding to the first three energy levels of a particle in a box.arrow_forwardThe treatment of electrons in atoms must be a quantum treatment, but classical physics still works for baseballs. Where is the dividing line? Suppose we consider a spherical virus, with a diameter of 30 nm, constrained to exist in a long, narrow cell of length 1.0 μm. If we treat the virus as a particle in a box, what is the lowest energy level? Is a quantum treatment necessary for the motion of the virus?arrow_forwardThis is a mathematical problem. Please solve the problemarrow_forward
- True or false? Classical mechanics is based on the principle of uncertainty and predicts all phenomena in terms of probabilities. It describes a sub-atomic world which is totally different from the world at macroscopic scales.arrow_forwardFor ultrarelativistic particles such as photons or high-energy electrons, the relation between energy and momentum is not E = p2/2m but rather E = pc. (This formula is valid for massless particles, and also for massive particles in the limit E » mc2.) Estimate the minimum energy of an electron confined inside a box of width 10-15 m. It was once thought that atomic nuclei might contain electrons; explain why this would be very unlikely.arrow_forward1)Grand free energy is defined as 0 =U-TS-µN A) Prove that in the grand canonical ensemble =-k3TlogZg. B)Using the Zg expression for the ideal gas, calculate the pressure and obtain the general state equation for the ideal gas.arrow_forward
- An electron with kinetic energy 2.0 MeV encounters a potential energy barrier of height 16.0 MeV and width 2.00 nm. What is the probability that the electron emerges on the other side of the barrier?arrow_forwardAn electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forwardWhat is the meaning of the expression "expectation value?" Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning