University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40.6, Problem 40.6TYU
To determine
The guaranteed result for the energy of particle given by the wave function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q#07. Consider the following three wave functions:
41y) = A,e¬y²
P2v) = Aze-&²/2) 3(v) = A3 (e¯y² + ye-*/2)
where A1, 42, and A3 are normalization constants.
(a) Find the constants A1, A2, and A3 so that 2, P1, and wz are normalized.
(b) Find the probability that each one of the states will be in the interval -1< y< 1.
For a "particle in a box" of length, L, the wavelength for the nth level is given by An
2L
%3D
2п
and the wave function is n(x) = A sin (x) = A sin (x). The energy levels are
пп
%3D
n?h?
given by En :
%3D
8mL2
lPn(x)|2 is the probability of finding the particle at position x in the box. Since the
particle must be somewhere in the box, the integral of this function over the length of the
box must be equal to 1. This is the normalization condition and ensuring that this is the
case is called “normalizing" the wave function.
Find the value of A the amplitude of the wave function, that normalizes it.
Write the normalized wave function for the nth state of the particle in a box.
Q.54 A particle in one dimensional box of length 2a with potential energy
[0 1지 a
V =
is perturbed by the potential V'= cx eV, where c is a constant. The 1st order correction to
the 1st excited state of the system is
хсeV.
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- Question 1. An electron with a total energy E moves in a 1-D region 1. At x=0, there is a potential energy step of height V. (as shown in the figure 2). Where the wave functions 41(x) = Aelax+ Be-iax, 42(x) = Ce-x/b+ Dex/b 1) H) Find the real numbers a and b in terms of E and Vo. State whether the electron energy is greater than or less than VO and why. Incident particles Region I V(x) Vo x=0 Region II Figure 2. Step potential functionarrow_forwardAn electron is in a state for which / 3. One allowed value of L, is h. L is described as a classical vector. At this value, what angle does the vector L make with the +z-axis? O 30.0° O 90.0° O 125° O 73.2°arrow_forwardA hypothetical one dimensional quantum particle has a normalised wave function given by (x) = ax - iß, where a and 3 are real constants and i = √-1. What is the most likely. x-position, II(x), for the particle to be found at? 0 11(x) == ○ II(2) = 0 ○ II(r) = 2/ O II(z) = 011(r) = ± √ +√ 13 aarrow_forward
- Chapter 38, Problem 071 For the arrangement of Figure (a) and Figure (b), electrons in the incident beam in region 1 have energy E has a height of U1 = 823 ev and the potential step = 617 ev. What is the angular wave number in (a) region 1 and (b) region 2? (c) What is the reflection coefficient? (d) If the incident beam sends 5.29 x 105 electrons against the potential step, approximately how many will be reflected? V= 0 V< 0 x = 0 region 1 region 2 (a) Energy --E- Electron (b)arrow_forwardA particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forwardThe smallest observed frequency for a transition between states of an electron in a one-dimensional box is 3.0 X 10¹3 s¹. What is the length of the box?arrow_forward
- For a particle in a three-dimensional box, if the particle is in the (nx, ny, nz)=(4,3,3) state, what is the probability of finding the particle within 0<x<7LX/8 0,y,3Ly/4 LZ/4<z<Lzarrow_forwardThe wave function of a particle in a box is given by ____________ a) A sin(kx) b) A cos(kx) c) Asin(kx) + Bcos(kx) d) A sin(kx) – B cos(kx)arrow_forwardAn electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.arrow_forward
- Q#07. Consider the following three wave functions: V1(0) = A,e¬y² Þ2V) = Aze¬O*/2) W3v) = A3 (e=y* + ye¬0*/2)) where A1, A2, and A3 are normalization constants. (a) Find the constants A1, 42, and A3 so that 2, 41, and z are normalized. (b) Find the probability that each one of the states will be in the interval -1< y< 1.arrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forwardA quantum system is described by a wave function (r) being a superposition of two states with different energies E1 and E2: (x) = c191(r)e iEit/h+ c292(x)e¯iE2t/h. where ci = 2icz and the real functions p1(x) and p2(r) have the following properties: vile)dz = ile)dz = 1, "0 = rp(x)T#(x)l& p1(x)92(x)dx% D0. Calculate: 1. Probabilities of measurement of energies E1 and E2 2. Expectation valuc of cnergy (E)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning