University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.8E
(a)
To determine
The value of
(b)
To determine
To plot: The graph of the wave function.
(c)
(i)
To determine
The probability of finding the particle within
(ii)
To determine
The probability of finding the particle on the left side of the origin.
(iii)
To determine
The probability of finding the particle between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle moving in one dimension has the wave function
Y(x,t) = Aeli(ax-bt)]
%3D
where a and b are constants. What is the potential field V(x) in which the particle is moving?
A real wave function is defined on the half-axis:
[0≤x≤00) as y(x) = A(x/xo)e-x/xo
where xo is a given constant with the dimension of length.
a) Plot this function in the dimensionless variables and find the constant A.
b) Present the normalized wave function in the dimensional variables.
Hint: introduce the dimensionless variables = x/xo and Y(5) = Y(5)/A.
1/4
x²
Evaluate (Ar)(Ap) for a particle having wavefunction y =
exp
2B
(a) 0
(b)
2.
(c)
2.
(d) h
Answer
A
B
35°C O
IJ
rch
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the region 0 < x < a, a particle is described by the wave function y₁(x) = -b(x² - a²). In the region a≤ x ≤w, its wave function is y2(x) = (x-d)² - c. For x≥w, ¥3(x) = 0. (a) By applying the continuity conditions at x= a, find c and d in terms of a and b. (b) Find w in terms of a and b.arrow_forwardConsider a particle in one dimension with a potential energy J-U, -c< x < c V (x) = 0, otherwise where U is a positive constant. Consider the wave function is a(b+x), -barrow_forwardA uniform plane wave with Ex, = 0.4kV /m, Ey, = Ez, = 0 at P(0.2,0.3,0.5) and t = 60 µs is propagating in ŷ direction inside a lossless material with u, 9, €, = 4. Find Ē, Ħ. 2.arrow_forwardThe wave function is given by (x,t) = C 3e-iwit$1(x) + 4e-iwz'$2(x)] where 1(x) and $2(x) are energy eigenfunctions that are orthonormal, and w1 = 3.0 x 1015 Hz and w2 = 7.5 x 1015 Hz.arrow_forwardIf the maximum particle velocity is 4 times the wave velocity, then the relation between wavelength and amplitude is, (a).jA= A/2n (b) 1= TA/2 ()1-1/2A(d) = LA/2arrow_forwardSuppose that you have the functional J (a) = [ f {y (a, x), y' (a, æ); x}dx where y (a, x) = 3x – a cos? (x) and f = (y')². What is the minimum value of J (a)? 97Tarrow_forwardphyarrow_forwardQ 2: A particle moves inside a one-dimensional box of length L in the direction of sahur X its wave function . Y(x)~exp(—px) Find the calibration constant in terms of the dimension of the box first and then find the calibration constant when L — ooarrow_forward(2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forwardIn the region 0 w, V3 (x) = 0. (a) By applying the continuity conditions atx = a, find c and d in terms of a and b. (b) Find w in terms of a and b. -arrow_forward(4) particle is represented by the following wave function: 4(x) = 0 x L/2 (a) Use the normalization condition to find C in terms of L. (b) Find the average value of x, (c) Find the average value of x², (d) Use your answers from (b) and (c) to find xrms.arrow_forwardAs a 1-dimensional problem, you have Schrodinger's equation, given by: -h? a2 a ih h 4(x, t) = at 2m Əx² ¥(x,t) + V(x) Þ(x,t) Suppose for a specific V(x) and certain boundary conditions, the function w, (x, t) is a solution to the above equation and 42 (x, t) is also a solution. Show that (x, t) equation, where a, b are complex numbers. a 41 (x, t) + b w2(x, t) also solves the abovearrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning