University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.2DQ
To determine
Whether the statement ‘the relationship of ray optics to the more general wave picture is analogous to the relationship of Newtonian mechanics, with well-defined particles trajectories, to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A student remarks that the relationship of ray optics to the more general wave picture is analogous to the relationship of Newtonian mechanics, with well-defined particle trajectories, to quantum mechanics. Comment on this remark
You are interested in investigating the atomic structure of a sample with a beam of electrons. The atomic structure has a characteristic size of 0.100 nm. Knowing that the observable detail of the atomic struture is limited to about the wavelength of the probe (electrons, in this case), to what speed should you accelerate the electrons in the beam? You may assume the electrons speed is non relativistic. Hint: de Brogile matter waves!
Question 1: It is not possible to observe the effect of De Broglie wave particle duality and
Heisenberg uncertainty principle in daily life. But these two phenomenon are observable in case
of subatomic particles like electron. Prove this observation with the help of suitable examples and
discussion.
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can we simultaneously measure position and energy of a quantum oscillator? Why? Why not?arrow_forwardSuppose a wave function is discontinuous at some point. Can this function represent a quantum state of some physical particle? Why? Why not?arrow_forwardWhat kind of physical quamtity does a wave function of an electron represent?arrow_forward
- Is it possible that when we measure the energy of a quantum particle in a box, the measurement may return a smaller value than the ground state energy? What is the highest value of the energy that we can measure for this particle?arrow_forwardConsider electrons incident on a double slit apparatus. You observe that they form the same pattern as 460-nm light on the screen behind the slits. a) Calculate the velocity, in m/s, of the electrons. b) Calculate the kinetic energy, in Joules, of the electron.arrow_forwardThis question is modern physics from the waves and particles chapter: An electron beam strikes a barrier with a single narrow slit, and the electron flux – number of electrons per unit time per unit area – detected at the very center of the resulting intensity pattern is F_1. Next, two more identical slits are opened equidistant on either side of the first and equally “illuminated” by the beam. What wil be the flux at the very center now? Does your answer imply that ore than three times as many electrons pass through three slits than through one? Why or why not?arrow_forward
- In a demonstration of the double slit experiment, a high velocity stream of dense spheres is fired at a slit , and another stream is fired at an adjacent identical slit. For each stream, all spheres pass straight through the slit, then hit the same location on a screen. Next, two streams of electrons are fired at two slits next to one another. On a screen beyond the slits, a diffraction pattern is formed. Which situation does classical mechanics explain, and which situation does quantum mechanics explain? Spheres Electrons A Classical mechanics Classical mechanics Spheres Electrons в Classical mechanics Quantum mechanics Spheres Electrons Quantum mechanics Classical mechanics Spheres Electrons D Quantum mechanics Quantum mechanicsarrow_forwardWhat difficulties does the uncertainty principle cause in trying to pick up an electron with a pair of forceps? Does the uncertainty principle apply to nature itself or only to the results of experiments? That is, is it the posi- tion and momentum that are really uncertain, or merely our knowledge of them? What is the difference between these two interpretations?arrow_forwardElectrons with an energy of 0.610 eV are incident on a double slit in which the two slits are separated by 60.0 nm. a) What is the de Broglie wavelength (in nanometers) of these electrons? b) What is the angle between the two second-order maxima in the resulting interference pattern? I really appreciate the help on this question. I've been stumped on it.arrow_forward
- (Hand by writing ans.)A certain atom has an energy level of 3.50 eV above the ground state. When excited to this state, it remains 4.0µs, on average, before emitting a photon and returning to the ground state. i) What is the energy of the photon? What is the wavelength of the photon? ii) What is the smallest possible uncertainty in the energy of the photon?arrow_forwardA) Accelerate electrons in an electron microscope with 40 kV. What is the smallest distancebetween teorical observed matter?b) calculate the de Broglie wavelength for an electron move with 10^7 m/s velocity. What isthe de Broglie wavelength for a stone with 50 gr mass act with 40 m/s velocity (?).? whichone of the b section’s option is observed with wave nature diffraction techniques? Why?arrow_forwardSuppose a two-slit interference experiment is carried out using an electron beam. Would the same interference pattern result if one slit at a time is uncovered instead of both at once? If not, why not? Doesn’t each electron go through one slit or the other? Or does every electron go through both slits? Discuss the latter possibility in light of the principle of complementarityarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning