University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.27E
(a)
To determine
The tunneling probability of electron with kinetic energy of
(b)
To determine
The tunneling probability of proton with kinetic energy of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A stream of electrons, each with a kinetic energy of 450 eV, is sent through a potential-free region toward a potential barrier of
"height" 500 eV and thickness 0.300 nm. The stream consists of 1 × 1015 electrons. How many should tunnel through the barrier? Pick
the closest answer. The electron mass is 9.10938 x 10-31 kg.
O 8 x 107
O 8 × 10⁹
3 x 10³
6 x 104
4x 107
4 x 105
O 1 x 106
O 7 x 104
Ⓒ 9 × 105
O 7 x 106
A 2.0 eV electron encounters a barrier 5.0 eV high. What is the probability that it will tunnel through the barrier if the barrier width is (a) 1.00 nm and (b) 0.50 nm?
In a particular semiconductor device, electrons that are accelerated through a potential of 5 V attempt to tunnel through a barrier of width 0.8 nm and height 10 V. What fraction of the electrons are able to tunnel through the barrier if the potential is zero outside the barrier?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When an electron and a proton of the same kinetic energy encounter a barrier of the same height and width, which one of them will tunnel through the barrier more easily? Why?arrow_forwardA 1.2 eV electron has a 10^-4 probability of tunneling through a 2.3 eV potential barrier. What is the probability of a 1.2 eV proton tunneling through the same barrier?arrow_forwardA stream of electrons is of energy E is incident on a potential barrier of height U and thickness d. Even though U >> E, 5% of the electrons tunnel through the barrier. If the thickness of the barrier decrease to 0.12 d, what percentage of the electrons will tunnel through?arrow_forward
- An electron possessing the kinetic energy E approaches a potential barrier of the height U = 2E and tunnels through it. What is the kinetic energy energy of the electron afterwards?arrow_forwardIn a particular semiconductor device, electrons that are accelerated through a potential of 5 V attempt to tunnel through a barrier of width 0.8 nm and height 10 V. What is the tunneling probability through the barrier If the potential is zero outside * ?the barrier 1.02 x 10-8 2.26 x 10-8 4.5 x 10-8 16.4 x 10-8 1.13 x 10-8arrow_forwardA particle with mass 2.5 × 10^(-27) kg and energy 4.0 eV approaches a potential barrier with a height of 2.5 eV and a width of 1.0 nm. Calculate the probability of the particle tunneling through the barrier.arrow_forward
- An electron with initial kinetic energy 5.5 eV encounters a square potential barrier of height 10.0 eV. What is the width of the barrier if the electron has a 0.50% probability of tunneling through the barrier?arrow_forwardA thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in the z-direction with vx 0.00m/s passes through the hole. Afterward, within what range is vx likely to be?arrow_forwardAn electron with initial kinetic energy 6.0 eV encounters a barrier with height 11.0 eV. What is the probability of tunneling if the width of the barrier is (a) 0.80 nm and (b) 0.40 nm?arrow_forward
- In a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV. (a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )? (b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?arrow_forwardTwo copper nanowires are insulated by a copper oxide nano-layer that provides a 10.0-eV potential barrier. Estimate the tunneling probability between the nanowires by 7.00-eV electrons through a 5.00-nm thick oxide layer. What if the thickness of the layer were reduced to just 1.00 nm? (Hint: the rest mass of the electron (m) = 511 keV/c2, ℏ = 0.1973 keVnm/c)arrow_forwardTwo nanowires are separated by 1.3 nm as measured by STM. Inside the wires the potential energy is zero, but between the wires the potential energy is greater than the electron’s energy by only 0.9 eV. Estimate the probability that the electron passes from one wire to the other.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning