University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.19DQ
To determine
Whether it is a contradiction that the particle with less energy than the potential can penetrate the potential in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 4.70-g particle confined to a box of length L has a speed of 4.40 mm/s.
(a) What is the classical kinetic energy of the particle?
(b) If the energy of the first excited state (n = 2) is equal to the kinetic energy found in part (a), what is the value of L?
m
(c) Is the result found in part (b) realistic?
Yes
No
Explain.
A 4.00-g particle confined to a box of length L has a speed of 1.00 mm/s. (a) What is the classical kinetic energy of the particle? (b) If the energy of the first excited state (n = 2) is equal to the kinetic energy found in part (a), what is the value of L? (c) Is the result found in part (b) realistic? Explain.
In Quantum Mechanics, even if E < U, there is a chance that the particle might tunnel through it. This concept is different from the classical mechanics.
True or false
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- A grain of sand with mass 1.0 mg and kinetic energy 1.0 J is incident on a potential energy barrier with height 1.00000 J and width 2500 nm. How many grains of sand have to fall on this barrier before, on the average, one passes through?arrow_forwardA particle with mass m is in a one-dimensional box with width L. If the energy of the particle is (9p2U2)/(2mL2).What is the linear momentum of the particle?arrow_forwardA particle in a one-dimensional box of length L has a kinetic energy much greater than its rest energy. What is the ratio of the following energy levels En: E2/E1, E3/ E1, E4/E1? How do your answers compare with the nonrelativistic case?arrow_forward
- For ultrarelativistic particles such as photons or high-energy electrons, the relation between energy and momentum is not E = p2/2m but rather E = pc. (This formula is valid for massless particles, and also for massive particles in the limit E » mc2.) Estimate the minimum energy of an electron confined inside a box of width 10-15 m. It was once thought that atomic nuclei might contain electrons; explain why this would be very unlikely.arrow_forwardSolving the Schrödinger equation for a particle of energy E 0 Calculate the values of the constants D, C, B, and A if knownCalculate the values of the constants D, C, B, and A if known and 2mE 2m(Vo-E) a =arrow_forwardA 4.90g Particle confined to a box of length L has a speed of 4.70mm/s a) lalhat is the classical Kinetic energy of Particle? the b) If the energy of the first excited State (n=2) is equal to the Kinetic energy found in part (a), what is the value Note: Answer must be in mi L? of c) Is the result found in part (b) realistic ? Explain.arrow_forward
- Problem 3. Consider the two example systems from quantum mechanics. First, for a particle in a box of length 1 we have the equation h² d²v EV, 2m dx² with boundary conditions (0) = 0 and V(1) = 0. Second, the Quantum Harmonic Oscillator (QHO) = h² d² +kr²V = EV 2m dg²+ka² 1/ k2²) v (a) Write down the states for both systems. What are their similarities and differences? (b) Write down the energy eigenvalues for both systems. What are their similarities and differences? (c) Plot the first three states of the QHO along with the potential for the system. (d) Explain why you can observe a particle outside of the "classically allowed region". Hint: you can use any state and compute an integral to determine a probability of a particle being in a given region.arrow_forwardi) Why does the plane wave [Y(x,t)=Ae^i(kxewt)] have an issue and how to solve it? ii) What are the limitations of the time-dependent Schroedinger Equation?arrow_forwardProblem 1. Using the WKB approximation, calculate the energy eigenvalues En of a quantum- mechanical particle with mass m and potential energy V (x) = V₁ (x/x)*, where V > 0, Express En as a function of n; determine the dimensionless numeric coefficient that emerges in this expression.arrow_forward
- Assume that an atomic nucleus can be thought of as a three-dimensional box with a width of 2 x 10^-14 m. If a proton moving as particles in this box, specify : Energy is excited first and second.arrow_forwardA particle with mass m is moving in three-dimensions under the potential energy U(r), where r is the radial distance from the origin. The state of the particle is given by the time-independent wavefunction, Y(r) = Ce-kr. Because it is in three dimensions, it is the solution of the following time-independent Schrodinger equation dıp r2 + U(r)µ(r). dr h2 d EÞ(r) = 2mr2 dr In addition, 00 1 = | 4ar?y? (r)dr, (A(r)) = | 4r²p²(r)A(r)dr. a. Using the fact that the particle has to be somewhere in space, determine C. Express your answer in terms of k. b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent wave equation, what is the energy E of the particle and the potential energy U(r). (As usual, E and U(r) will be determined up to a constant.) Express your answer in terms of m, k, and ħ.arrow_forwardAn electron has total energy 6.29 eV. The particle initially travels in a region with constant potential energy 0.61 eV, before encountering a step to a new constant potential energy of 4.03 eV. What is the probability (in %) that the electron will be transmitted over the potential step?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning