University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.22DQ
To determine
Whether the wave function being non zero outside the barrier means the particle splits into two parts when it strikes the barrier.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q.4. Imagine that a particle is coming from left with finite energy E and encountered a
potential V(x) = Vo (> E) at origin for x20 (as shown below in the figure). Prove that if Vo
goes to infinity then wave function goes to zero in the region x 20.
IF
Vo
X-0
Q1. Consider the finite square well potential shown in the following diagram:
U(x)
E>0
L
The potential is given by:
for xL|
-U. for 0 0is incident on this region from the left. Using the plane
A particle with energy
wave approximation for the particle:
a) Show that Y = Ae*+Be¬k* is a suitable general solution to the time-independent
Schrödinger wave-equation (TISE) that applies in the region x L write
down the four equations arising from the boundary conditions that apply at x=0
and
x=L .
Which of the following is ALWAYS FALSE for a particle encountering a potential barrier?
I. The wave function of the particle is continuous and smooth upon entering and leaving the potential barrier.II. Increasing the length of the potential barrier reduces the probability of the particle to pass through.III. Inside the potential barrier, the wave function of the particle is exponentially decreasing.IV. The transmitted wave function has a shorter wavelength.
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- When an electron and a proton of the same kinetic energy encounter a barrier of the same height and width, which one of them will tunnel through the barrier more easily? Why?arrow_forwardThe wave function shown in Fig. is nonzero for both x 6 0 and x 7 L. Does this mean that the particle splits into two parts when it strikes the barrier, with one part tunneling through the barrier and the other part bouncing off the barrier? Explain.arrow_forwardConsider a particle of mass m, located in a potential energy well.one-dimensional (box) with infinite height walls. The wave function that describes this system is:Ψn(x) = K sin (nπx /L), for 0 ≤ x ≤ LΨn(x) = 0 for any other value.K is a constant and n = 1,2,3,... Determine K*K = │K│2arrow_forward
- A particle with mass 2.5 × 10^(-27) kg and energy 4.0 eV approaches a potential barrier with a height of 2.5 eV and a width of 1.0 nm. Calculate the probability of the particle tunneling through the barrier.arrow_forwardI need the answer as soon as possiblearrow_forwardGiven: For sake of simplicity, let us consider a particle with mass, m, in one dimension trapped in an infinite square well potential. The bottom of the potential well has zero potential energy, and the particle is known to be confined between 0arrow_forwardParticle is described by the wave function Y = 0,x 0 a) Calculate A. b) Take L as 10 nm and calculate the probability of finding the particle in the region 1 nmarrow_forward2arrow_forwardQ2. Consider a particle with an effective mass of 0.067 mg (an electron in gallium arsenide) and 18|a kinetic energy of 0.2 eV incident on a step potential function of height 0.8 eV. Solve theequation of quantum tunneling to the width of potential barrier Assume the tunnelingprobability of a particle T=13.8%arrow_forwardConsidering the problem of a time independent one- dimensional particle in a box with a dimension from 0 to 2a. From the quantum point of view Find the following: 1. The allowed energy levels for this particle. 2. The normalized wave function that describes this particle.arrow_forwardConsider a particle trapped in a 1D box with zero potential energy with walls at x = o and x = L. The general wavefunction solutions for this problem with quantum number, n, are: V,6) = sin ) 4n(x) = The corresponding energy (level) for each wavefunction solution is: n²h? En 8mL? a) What is the probability of finding the particle between x = L/4 and x = 3L/4 when the particle is in quantum state n = 1, 2 and 3. You can use calculator or a numerical program to do the integral. For people who want to try doing the integral by hand, the following identity will be helpful: sin²(x) = (1 – cos (2x))/2.arrow_forwardA particle of mass m is contained in a one-dimensional infinite well extending from L to x=- 2 L The particle is in its ground state given by ø.(x)= /2/L cos(zx/L). X = - The walls of the box are moved suddenly to form a box extending from x = -L to x= L. what is the probability that the particle will be in the ground state after this sudden expansion?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning