University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.29E
(a)
To determine
The tunneling probability of electron with kinetic energy of
(b)
To determine
The tunneling probability of electron with kinetic energy of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron with initial kinetic energy 6.0 eV encounters a barrier with height 11.0 eV. What is the probability of tunneling if the width of the barrier is (a) 0.80 nm and (b) 0.40 nm?
A 2.0 eV electron encounters a barrier 5.0 eV high. What is the probability that it will tunnel through the barrier if the barrier width is (a) 1.00 nm and (b) 0.50 nm?
An electron with initial kinetic energy 5.5 eV encounters a square potential barrier of height 10.0 eV. What is the width of the barrier if the electron has a 0.50% probability of tunneling through the barrier?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electron with total energy E = 5.0 eV approaches a rectangular potential energy barrier with U0 = 6.0 eV. What should the width L of the potential barrier be so that the probability of the electron crossing it is one in a million?arrow_forwardIn a particular semiconductor device, electrons that are accelerated through a potential of 5 V attempt to tunnel through a barrier of width 0.8 nm and height 10 V. What fraction of the electrons are able to tunnel through the barrier if the potential is zero outside the barrier?arrow_forwardA particle with mass 2.5 × 10^(-27) kg and energy 4.0 eV approaches a potential barrier with a height of 2.5 eV and a width of 1.0 nm. Calculate the probability of the particle tunneling through the barrier.arrow_forward
- In a particular semiconductor device, electrons that are accelerated through a potential of 5 V attempt to tunnel through a barrier of width 0.8 nm and height 10 V. What is the tunneling probability through the barrier If the potential is zero outside * ?the barrier 1.02 x 10-8 2.26 x 10-8 4.5 x 10-8 16.4 x 10-8 1.13 x 10-8arrow_forward4. A simple model of a radioactive nuclear decay assumes that alpha particles are trapped inside a nuclear potential well. An alpha particle is a particle made out of two protons and two neutrons and has a mass of 3.73 GeV/c². The nuclear potential can be modeled as a pair of barriers each with a width of 2.0 fm and a height of 30.0 MeV. Find the probability for an alpha particle to tunnel across one of the potential barriers if it has a kinetic energy of 20.0 MeV.arrow_forwardA stream of electrons, each with a kinetic energy of 450 eV, is sent through a potential-free region toward a potential barrier of "height" 500 eV and thickness 0.300 nm. The stream consists of 1 × 1015 electrons. How many should tunnel through the barrier? Pick the closest answer. The electron mass is 9.10938 x 10-31 kg. O 8 x 107 O 8 × 10⁹ 3 x 10³ 6 x 104 4x 107 4 x 105 O 1 x 106 O 7 x 104 Ⓒ 9 × 105 O 7 x 106arrow_forward
- A 1.2 eV electron has a 10^-4 probability of tunneling through a 2.3 eV potential barrier. What is the probability of a 1.2 eV proton tunneling through the same barrier?arrow_forwardAn electron with initial kinetic energy 6.0 eV encounters a barrier with height 11.0 eV. What is the probability of tunnelling of the wid of the barrier is 0.80nm?. bility current co responding to the wave functionarrow_forwardA stream of electrons is of energy E is incident on a potential barrier of height U and thickness d. Even though U >> E, 5% of the electrons tunnel through the barrier. If the thickness of the barrier decrease to 0.12 d, what percentage of the electrons will tunnel through?arrow_forward
- A 5.0-eV electron impacts on a barrier of with 0.60 nm. Find the probability of the electron to tunnel through the barrier if the barrier height is (a) 7.0 eV; (b) 9.0 eV; and (c) 13.0 eV.arrow_forwardA particle of mass m is confined to a box of width L. If the particle is in the first excited state, what are the probabilities of finding the particle in a region of width0.020 L around the given point x: (a) x=0.25L; (b) x=040L; (c) 0.75L and (d) x=0.90L.arrow_forwardWhen an electron and a proton of the same kinetic energy encounter a barrier of the same height and width, which one of them will tunnel through the barrier more easily? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning