University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.32E
To determine
The width of the barrier with a height of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron with initial kinetic energy 6.0 eV encounters a barrier with height 11.0 eV. What is the probability of tunneling if the width of the barrier is (a) 0.80 nm and (b) 0.40 nm?
A particle with mass 2.5 × 10^(-27) kg and energy 4.0 eV approaches a potential barrier with a height of 2.5 eV and a width of 1.0 nm. Calculate the probability of the particle tunneling through the barrier.
A 2.0 eV electron encounters a barrier 5.0 eV high. What is the probability that it will tunnel through the barrier if the barrier width is (a) 1.00 nm and (b) 0.50 nm?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 6.0-eV electron impacts on a barrier with height 11.0 eV. Find the probability of the electron to tunnel through the barrier if the barrier width is (a) 0.80 nm and (b) 0.40 nm.arrow_forwardAn electron with kinetic energy 2.0 MeV encounters a potential energy barrier of height 16.0 MeV and width 2.00 nm. What is the probability that the electron emerges on the other side of the barrier?arrow_forwardIn a particular semiconductor device, electrons that are accelerated through a potential of 5 V attempt to tunnel through a barrier of width 0.8 nm and height 10 V. What fraction of the electrons are able to tunnel through the barrier if the potential is zero outside the barrier?arrow_forward
- An electron with total energy E = 5.0 eV approaches a rectangular potential energy barrier with U0 = 6.0 eV. What should the width L of the potential barrier be so that the probability of the electron crossing it is one in a million?arrow_forward4. A simple model of a radioactive nuclear decay assumes that alpha particles are trapped inside a nuclear potential well. An alpha particle is a particle made out of two protons and two neutrons and has a mass of 3.73 GeV/c². The nuclear potential can be modeled as a pair of barriers each with a width of 2.0 fm and a height of 30.0 MeV. Find the probability for an alpha particle to tunnel across one of the potential barriers if it has a kinetic energy of 20.0 MeV.arrow_forwardAn electron having total energy E = 4.50 eV approaches a rectangular energy barrier with U = 5.00 eV and L = 950 pm as shown in Figure P40.21. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.50-eV electron tunneling through the barrierto be one in one million?arrow_forward
- A proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are incident on a barrier of thickness 11.8 fm and “height” 10.9 MeV. Each particle has a kinetic energy of 2.50 MeV. What is the ratio of the tunneling probability of the proton to the tunneling probability of the deuteron?arrow_forwardIn a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV. (a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )? (b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?arrow_forwardA stream of electrons is of energy E is incident on a potential barrier of height U and thickness d. Even though U >> E, 5% of the electrons tunnel through the barrier. If the thickness of the barrier decrease to 0.12 d, what percentage of the electrons will tunnel through?arrow_forward
- A proton and a deuteron (which has the same charge as the proton but 2 times the mass) are incident on a barrier of thickness 10 fm and height 10 MeV. Each particle has the same kinetic energy. Which particle has the higher probability of tunneling through the barrier?arrow_forwardA stream of electrons, each with a kinetic energy of 450 eV, is sent through a potential-free region toward a potential barrier of "height" 500 eV and thickness 0.300 nm. The stream consists of 1 × 1015 electrons. How many should tunnel through the barrier? Pick the closest answer. The electron mass is 9.10938 x 10-31 kg. O 8 x 107 O 8 × 10⁹ 3 x 10³ 6 x 104 4x 107 4 x 105 O 1 x 106 O 7 x 104 Ⓒ 9 × 105 O 7 x 106arrow_forwardThe table gives relative values for three situations for the barrier tunneling experiment of the figures. Electron Energy Barrier Height Barrier Thickness (a) 5E L (b) 17E L/2 (c) 2E 2L Energy V-0 V<0 V-0 Electron * 0 x l. Rank the situations according to the probability of the electron tunneling through the barrier. If multiple situations rank equally, use the same rank for each, then exclude the intermediate ranking (i.e. if objects A, B, and C must be ranked, and A and B must both be ranked first, the rạnking would be A:Greatest, B:Greatest, C:Third greatest). If all situations rank equally, rank each as 'Greatest'. (a) (b) (c)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning