University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.12E
(a)
To determine
The width of the box in order for the
(b)
To determine
The ground-state energy for a box of width calculated in part (a) and to compare the answer with the ground-state energy of hydrogen atom.
(c)
To determine
Whether one-dimensional box is a good model for a hydrogen atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When a hydrogen atom undergoes a transition from n=3 to n=2 level, a photon with λ=656.5 nm is emitted. (a) If we imagine the atom as an electron in a one-dimensional box, what is the width of the box so that the transition from n=3 to n=2 corresponds to the emission of a photon of this wavelength? (b) For a box with the width calculated in (a), what is the ground energy state? (c) Do you think a one-dimensional box is a good model for a hydrogen atom? Because?
When an electron in a one-dimensional box makes a transition from the n = 1 energy level to the n = 2 level, it absorbs a photon of wavelength 426 nm. What is the wavelength of that photon when the electron undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the width L of the box?
When a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the width of the box in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a)What are the energies of the first three energy levels of an electron confined in a one-dimensional box of wavelength 0.70nm. Give your answer in electron volts (eV) (b) How much energy must the electron lose to move from the n=2 energy level to the n=1 energy level? Again, give your answer in eV. (c) Suppose that an electron can move from the n=2 level to n=1 level by emitting a photon of light. If energy is conserved, what must the photon wavelength be? Give your answer in nanometersarrow_forwardConsider photons at temperature T = 300K in a cubic box of volume 1 m' with periodic boundary conditions. a) Find the total number of photons in the lowest orbital state. What is the total energy of these photons? Hint: The 1-particle energy of photons is ɛ(k,s)=ħck = hc , independent of polarization s. Consider the Bose-Einstein distribution function (with u= 0) for the lowest-energy orbital states 2л k, = (1,0,0), k, =(0,1,0), k, =(0,0,1). Find the total number of photons that occupy L L L these states, taking into account that each of the orbital states has 2 polarizations s. b) Find the number of photons in a single orbital state with wavelength 2 = 5000 Å. What is the total energy of these photons?arrow_forward4arrow_forward
- An atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forwardWhat is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 4 to the n = 6 energy level? (a) energy in eV? (b) wavelength in µm?arrow_forwardWhen a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the ground-state energy in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?arrow_forward
- A sodium atom in one of the states labeled “Lowest excited levels” in Fig. remains in that state, on average, for 1.6 * 10-8 s before it makes a transition to the ground state, emitting a photon with wavelength 589.0 nm and energy 2.105 eV. What is the uncertainty in energy of that excited state? What is the wavelength spread of the corresponding spectral line?arrow_forwardA) By what factor is the uncertainty of the electron's position(1.36×10-4 m) larger than the diameter of the hydrogen atom?(Assume the diameter of the hydrogen atom is 1.00×10-8 cm.) B) Use the Heisenberg uncertainty principle to calculate Δx for a ball (mass = 122 g, diameter = 8.50 cm) with Δv = 0.425 m/s. C) The uncertainty of the (above) ball's position is equal to what factor times the diameter of the ball?arrow_forwardProblem 4: a. For Compton scattering, what photon scattering angle provides the maximum possible kinetic energy to the electron? (Please explain your answer. Hint: What angle 6 makes the wavelength difference as large as possible?) b. In this case where the electron gains the maximum kinetic energy, if the wavelength of the incident photon was 0.004960 nm, what kinetic energy did the electron gain?arrow_forward
- While undergoing a transition from the n = 1 to the n = 2 energy level, a harmonic oscillator absorbs a photon of wavelength 6.50 mm. What is the wavelength of the absorbed photon when this oscillator undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the value of 2k′bar/m, the angular oscillation frequency of the corresponding Newtonian oscillator?arrow_forwarda)Suppose a hydrogen molecule in its ground state is dissociated by absorbing a photon of ultraviolet light, causing the two hydrogen atoms to fly apart. What photon energy will give each atom a speed of 19 km/s? The mass of a hydrogen atom is 1.7×10^−27 kg Express your answer to two significant figures and include the appropriate units.arrow_forwardA Hydrogen atom initially in its ground state i.e., n = 1 level, absorbs a photon and ends up in n = 4 level. (a) What must have been the frequency of the photon? Now the electron makes spontaneous emission and comes back to the ground state. (b) What are the possible frequencies of the photons emitted during this process?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning