University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.44P
(a)
To determine
The wave function
(b)
To determine
To plot: The graph of
(c)
To determine
To plot: The graph of
(d)
To determine
Product
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is confined to move in the xy plane in a rectangle whose dimensions are Lx and Ly. That is, the electron is trapped in a two dimensional potential well having lengths of Lx and Ly. In this situation, the allowed energies of the electron depend on the quant numbers Nx and Ny, the allowed energies are given by
E = H^2/8Me ( Nx^2/ Lx^2 + Ny^2/Ly^2)
i) assuming Lx and Ly =L. Find the energies of the lowest for all energy levels of the electron
ii) construct an energy level diagram for the electron and determine the energy difference between the second exited state and the ground state?
A proton is confined in box whose width is d = 750 nm. It is in the n=3 energy state. What is the probability that the proton will be found within a distance of d/n from one of the walls? [Hint: the average value sin^2x over one or more of its cycles is 1/2]
PLEASE PLEASE include a sketch of U(x) and Ψ(x)
*24 Figure 39-30 shows a two-dimen-
sional, infinite-potential well lying in an
xy plane that contains an electron. We
probe for the electron along a line that
bisects L, and find three points at which
the detection probability is maximum. Figure 39-30 Problem 24.
Those points are separated by 2.00 nm.
Then we probe along a line that bisects L, and find five points at
which the detection probability is maximum. Those points are sep-
arated by 3.00 nm. What is the energy of the electron?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- We are going to use Heisenberg's uncertainty principle to estimate the ground- state energy of hydrogen. In our model, the electron is confined in a one- dimensional well with a length about the size of hydrogen, so that Ax = 0.0529 nm. Estimate Ap, and then assume that the ground-state energy is roughly Ap2/2me. (Give your answer in Joules or electron-volts.)arrow_forwardHarmonic oscillator eigenstates have the general form 1 μω ,1/4 μω AG)(√(-) n ħ In this formula, which part determines the number of nodes in the harmonic oscillator state? = y (x) 1 √(™ ћn 2"n! Holev 1/4 μω 1 2"n! exp(-1022²) 2ħ μω ħ 2"n! exp μω χ 2ħ 2arrow_forwardA particle of massm in a harmonic oscillator potential with angular frequency w is in the state (1 + {t)쭈 What is (p?) for this particle? mhw 2 O 6mħw O 3mhwarrow_forward
- A thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in the z-direction with vx 0.00m/s passes through the hole. Afterward, within what range is vx likely to be?arrow_forwardWhat is the answerarrow_forwardYou have the energy matrix for only 4x4 elements. Calculate the expected value of energy (E) using the function 1 1 -fox /2 e -3icut 2 [e heo S 0 0 0 2 E= = 5 0 0 e 0 2 0 0 0 Ther 2 J Al Laxities (E) A8l 2 gidd) dasll Cuaal l o |2 l Jiew /2 Vi *[fi“ e 0:‘ 5arrow_forward
- ▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forwardConsider the electron in a hydrogen atom is in a state of ψ(r) = (x + y + 3z)f(r).where f(r) is an unknown function depending only on r.(a) Is ψ an eigenstate of Lˆ2? Find the eigenvalue if your answer is ’Yes’.(b) Compute the probabilities of finding this electron in eigen states with m = −1, 0, +1. (c) Compute <Lz> in this state.arrow_forward
- Problem 39.12 Show that the ground-state hydrogen atom wavefunction is normalized.arrow_forwardChapter 38, Problem 071 For the arrangement of Figure (a) and Figure (b), electrons in the incident beam in region 1 have energy E has a height of U1 = 823 ev and the potential step = 617 ev. What is the angular wave number in (a) region 1 and (b) region 2? (c) What is the reflection coefficient? (d) If the incident beam sends 5.29 x 105 electrons against the potential step, approximately how many will be reflected? V= 0 V< 0 x = 0 region 1 region 2 (a) Energy --E- Electron (b)arrow_forwardWhat is the probability of finding a particle on a sphere between 0 < θ < pi/2 and 0 < φ < 2pi, if the particle has a total angular momentum of h√2 and 0 angular momentum in the z-component?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON