University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 40.3E
(a)
To determine
The smallest possible value of
(b)
To determine
The average speed with which the probability distribution is moving in the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
V,E
-V.
Consider the potential well of depth V, and width w, as shown in the figure above. An
electron with energy Ɛ > 0 is incident from the left.
(a) Determine the condition involving the incident energy (E) and the depth (V.) and width
(w) of the well for resonant transmission in which there is no reflected wave associated
with the electron.
(b) If 4(x) = Aejkx is the incident electron wave for x w) the well, under resonant conditions?
A particle with zero (total) energy is described by the wavefunction,
Ψ(x) =A cos((n?x/L)): −L/4≤ x ≤ L/4
= 0 : elsewhere.
Determine the normalization constant A.
Calculate the potential energy of the particle.
What is the probability that the particle will be found between x= 0 and x=L/8?
Try to normalize the wave function ei(kx-ωt) . Why can’t it be done over all space? Explain why this is not possible
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Similar questions
- Consider a very simplistic model of atomic nucleus in 1D: a proton is completely localized in a 1D box of width L = 1.00 × 10¬14m. In other words, the proton wavefunction outside of the "nucleus" is zero. Note that L represents a typical nuclear radius. (A) What are the energies of the ground and the first excited states? If the proton makes a transition from the first excited state to the ground state, what is the angular frequency of the emitted photon? (B) What is the probability that the proton in its ground state (i.e., the lowest energy state) is not found in the distance L/12 around each boundary of the box? (C) Using the uncertainty principle, derive a minimum possible value on the momentum uncertainty in the second state above the ground state. (D) Compare your answer to the previous question (B) to probability distribution one would obtain for a classical particle. First argue about how the probability distribution would look for a classical object in its ground state. How…arrow_forwardA particle in a box is in the ground level. What is the probability of finding the particle in the right half of the box? (Refer to Fig. , but don’t evaluate an integral.) Is the answer the same if the particle is in an excited level? Explain.arrow_forwardImagearrow_forward
- Given that at time t = 0 a particle’s wave function is given by ψ(x, 0) =Ax/a, if 0 ≤ x ≤ a,A(b − x)/(b − a), if a ≤ x ≤ b, with A0, Otherwise.a and b as constants, answer the following questions; a) Find the normalization constant A in terms of the constants a and b. b) Sketch ψ(x, 0) as a function of x. c) Where is the particle most likely to be found at time t = 0? d) What is the probability of finding the particle to the left of a?arrow_forwardPlease explain in detail.arrow_forwarda) For a particle in a one-dimensional box of length L, do the energy levels move up ordown if the box gets longer? Explain your answer clearly.b) Consider a particle in a two-dimensional box of side lengths a and b, where b = 2a.In which direction is it more expensive (in terms of energy) to add nodes? Explain youranswer clearly.c) Consider a particle in a two-dimensional box of side lengths a and b, where b = 2a.Write down the quantum numbers corresponding to the rst (lowest) 5 energy levels of thissystem. Note any degeneracies.arrow_forward
- I need the answer as soon as possiblearrow_forwardConsider a macroscopic object of mass 90 grams confined to move between two rigid walls separated by 2 m. What is the minimum speed of the object? What should the quantum number n be if the object is moving with a speed 1 ms-1? What is the separation of the energy levels of the object moving with that speed?arrow_forwardFor a particle in a 1-dimensional infinitely deep box of length L, the normalized wave function or the 1st excited state can be written as: Ψ2(x) = {1/i(2L)1/2} ( eibx -e-ibx), where b = 2π/L. Give the full expression that you need to solve to determine the probalibity of finding the particle in the 1st third of the box. Simplify as much as possible but do not solve any integrals.arrow_forward
- P-8 Please help me with the below question clearly with step by step explanation, please. Note: The algebra for this problem can be a bit much -- at the very least set up the equations and state what the knowns and unknowns are.arrow_forwardThe wave function of free particle initially at time t=0 is given by the wave packet $(x,0) = [2π(4x)3]-¹/4 exp{-4(4x)³ ikox} + ik where (Ax) represents the initial width of the wave packet (i.e. the variance). a) (x, t). b) Determine the wave function for the free particle at some later time t, What is the width (the variance) of the wave packet at the later time t?arrow_forwardConsider a particle in the first excited state of an infinite square well of width L. This particle has wavefunction (found in image ) for −L/2 ≤ x ≤ L/2, and ψ2(x) = 0 elsewhere. a) What is the value of the energy of this particle, E2? b) What is the probability density function, ρ, for this particle? c) At what values of x does the probability density vanish? d) What is the probability of finding this particle in the interval 0 ≤ x ≤ L/8?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning