University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 40, Problem 40.26E
To determine
The width of the well that has a depth equal to six times the ground-level energy
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is bound in a square well that has a depth equal to six times the ground-level energy E1-IDW of an infinite well of the same width. The longest-wavelength photon that is absorbed by this electron has a wavelength of 582 nm. Determine the width of the well.
An electron is moving past the square well shown in Fig. . The electron has energy E = 3U0 . What is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?
Photon in a Dye Laser. An electron in a long, organic molecule used in a dye laser behaves approximately like a particle in a box with width 4.18 nm. What is the wavelength of the photon emitted when the electron undergoes a transition (a) from the first excited level to the ground level and (b) from the second excited level to the first excited level?
Chapter 40 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 40.1 - Does a wave packet given by Eq. (40.19) represent...Ch. 40.2 - Prob. 40.2TYUCh. 40.3 - Prob. 40.3TYUCh. 40.4 - Prob. 40.4TYUCh. 40.5 - Prob. 40.5TYUCh. 40.6 - Prob. 40.6TYUCh. 40 - Prob. 40.1DQCh. 40 - Prob. 40.2DQCh. 40 - Prob. 40.3DQCh. 40 - Prob. 40.4DQ
Ch. 40 - If a panicle is in a stationary state, does that...Ch. 40 - Prob. 40.6DQCh. 40 - Prob. 40.7DQCh. 40 - Prob. 40.8DQCh. 40 - Prob. 40.9DQCh. 40 - Prob. 40.10DQCh. 40 - Prob. 40.11DQCh. 40 - Prob. 40.12DQCh. 40 - Prob. 40.13DQCh. 40 - Prob. 40.14DQCh. 40 - Prob. 40.15DQCh. 40 - Prob. 40.16DQCh. 40 - Prob. 40.17DQCh. 40 - Prob. 40.18DQCh. 40 - Prob. 40.19DQCh. 40 - Prob. 40.20DQCh. 40 - Prob. 40.21DQCh. 40 - Prob. 40.22DQCh. 40 - Prob. 40.23DQCh. 40 - Prob. 40.24DQCh. 40 - Prob. 40.25DQCh. 40 - Prob. 40.26DQCh. 40 - Prob. 40.27DQCh. 40 - Prob. 40.1ECh. 40 - Prob. 40.2ECh. 40 - Prob. 40.3ECh. 40 - Prob. 40.4ECh. 40 - Prob. 40.5ECh. 40 - Prob. 40.6ECh. 40 - Prob. 40.7ECh. 40 - Prob. 40.8ECh. 40 - Prob. 40.9ECh. 40 - Prob. 40.10ECh. 40 - Prob. 40.11ECh. 40 - Prob. 40.12ECh. 40 - Prob. 40.13ECh. 40 - Prob. 40.14ECh. 40 - Prob. 40.15ECh. 40 - Prob. 40.16ECh. 40 - Prob. 40.17ECh. 40 - Prob. 40.18ECh. 40 - Prob. 40.19ECh. 40 - Prob. 40.20ECh. 40 - Prob. 40.21ECh. 40 - Prob. 40.22ECh. 40 - Prob. 40.23ECh. 40 - Prob. 40.24ECh. 40 - Prob. 40.25ECh. 40 - Prob. 40.26ECh. 40 - Prob. 40.27ECh. 40 - Prob. 40.28ECh. 40 - Prob. 40.29ECh. 40 - Prob. 40.30ECh. 40 - Prob. 40.31ECh. 40 - Prob. 40.32ECh. 40 - Prob. 40.33ECh. 40 - Prob. 40.34ECh. 40 - Prob. 40.35ECh. 40 - Prob. 40.36ECh. 40 - Prob. 40.37ECh. 40 - Prob. 40.38ECh. 40 - Prob. 40.39ECh. 40 - Prob. 40.40ECh. 40 - Prob. 40.41ECh. 40 - Prob. 40.42PCh. 40 - Prob. 40.43PCh. 40 - Prob. 40.44PCh. 40 - Prob. 40.45PCh. 40 - Prob. 40.46PCh. 40 - Prob. 40.47PCh. 40 - Prob. 40.48PCh. 40 - Prob. 40.49PCh. 40 - Prob. 40.50PCh. 40 - Prob. 40.51PCh. 40 - Prob. 40.52PCh. 40 - Prob. 40.53PCh. 40 - Prob. 40.54PCh. 40 - Prob. 40.55PCh. 40 - Prob. 40.56PCh. 40 - Prob. 40.57PCh. 40 - Prob. 40.58PCh. 40 - Prob. 40.59PCh. 40 - Prob. 40.60PCh. 40 - Prob. 40.61PCh. 40 - Prob. 40.62PCh. 40 - Prob. 40.63PCh. 40 - Prob. 40.64CPCh. 40 - Prob. 40.65CPCh. 40 - Prob. 40.66CPCh. 40 - Prob. 40.67PPCh. 40 - Prob. 40.68PPCh. 40 - Prob. 40.69PPCh. 40 - Prob. 40.70PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A quantum mechanical oscillator vibrates at a frequency of 250.0 THz. What is the minimum energy of radiation it can emit?arrow_forwardWhat is the de Brogue wavelength of an electron that is accelerated from rest through a potential difference of 20 keV?arrow_forwardAn electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forward
- Problem 4: a. For Compton scattering, what photon scattering angle provides the maximum possible kinetic energy to the electron? (Please explain your answer. Hint: What angle 6 makes the wavelength difference as large as possible?) b. In this case where the electron gains the maximum kinetic energy, if the wavelength of the incident photon was 0.004960 nm, what kinetic energy did the electron gain?arrow_forwarda. Conceptually, discuss the particle-wave duality of light. Discuss the implications of this in combination with the de Broglie (pronounced “de Broy”) equation. b. The electron of a hydrogen atom is usually no further than 1.0 Å from the proton. We can therefore say the upper limit of the radius of an isolated hydrogen atom is roughly 1.0 Å. How does the de Broglie wavelength of the electron compare to this radius? (The velocity of an electron in the first principal energy level is about 2.2 x 106 m/s). Explain why wave-particle duality is so important for quantum mechanics, yet not required in macroscopic systems that are well described by classical mechanics. c. Comment as to whether neutrons with velocity 4.14 x 103 m/s may be used to determine structures of molecules in a diffraction-based experiment. You may consider the relevant distance between atoms in molecules to be on the order of 1 Å.arrow_forwardAn electron with an initial total energy of E=3.757 eV (in a region with zero potential) is incident on a potential step (extending from x=0 to infinity) to V=1.952 eV. What is the electron's de Broglie wavelength in nm once it crosses the potential step?arrow_forward
- An electron is trapped in a is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon wavelength: Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: m wavelength of most energetic photon: m marrow_forwardAn electron is trapped in a one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? wavelength: .0306 Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: wavelength of most energetic photon: Incorrect m Incorrect m Earrow_forwardIn a photoelectric effect experiment, it is found that no current flows unless the incident light has a wavelength shorter than 359 nm nm. What stopping potential will be needed to halt the current if light of 225 nm falls on the surface? Express your answer with the appropriate units. μA 2.249 V Vo =arrow_forward
- A harmonic oscillator absorbs a photon of wavelength 6.35 mm when it undergoes a transition from the ground state to the first excited state. What is the ground-state energy, in electron volts, of the oscillator?arrow_forwardThe work function for a Palladium metal plate on a PCB board of a detector is 5.22 eV. A. Compute the energy, in units of Joules, that is required to remove an electron from the plate B. Compute the KE and speed of and electron hit by a photon of wavelength 75 nm C. Compute the speed of the ejected electron if the wavelength of the photon is 265 nm (J) and (m/s) (J). (m/s)arrow_forward4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning