Concept explainers
(a)
Interpretation: The effect on temperature on the stretching of rubber band is to be stated and whether the stretching is an exothermic or endothermic process is to be explained in terms of intermolecular forces. Also, the sign of
Concept introduction: Rubber is a
To determine: The effect on temperature on the stretching of rubber band.
(b)
Interpretation: The effect on temperature on the stretching of rubber band is to be stated and whether the stretching is an exothermic or endothermic process is to be explained in terms of intermolecular forces. Also, the sign of
Concept introduction: Rubber is a polymer (long chain molecules) made from organic compound isoprene. The molecules in rubber are arranged in a tangled up position than an aligned position and due to thermal motion they lose their alignment and go back to their tangled state and this is called an elastic contact caused by an entropic force.
To determine: The stretching is an exothermic or endothermic process.
(c)
Interpretation: The effect on temperature on the stretching of rubber band is to be stated and whether the stretching is an exothermic or endothermic process is to be explained in terms of intermolecular forces. Also, the sign of
Concept introduction: Rubber is a polymer (long chain molecules) made from organic compound isoprene. The molecules in rubber are arranged in a tangled up position than an aligned position and due to thermal motion they lose their alignment and go back to their tangled state and this is called an elastic contact caused by an entropic force.
To determine: The above results in terms of intermolecular forces.
(d)
Interpretation: The effect on temperature on the stretching of rubber band is to be stated and whether the stretching is an exothermic or endothermic process is to be explained in terms of intermolecular forces. Also, the sign of
Concept introduction: Rubber is a polymer (long chain molecules) made from organic compound isoprene. The molecules in rubber are arranged in a tangled up position than an aligned position and due to thermal motion they lose their alignment and go back to their tangled state and this is called an elastic contact caused by an entropic force.
To determine: The sign of
(e)
Interpretation: The effect on temperature on the stretching of rubber band is to be stated and whether the stretching is an exothermic or endothermic process is to be explained in terms of intermolecular forces. Also, the sign of
Concept introduction: Rubber is a polymer (long chain molecules) made from organic compound isoprene. The molecules in rubber are arranged in a tangled up position than an aligned position and due to thermal motion they lose their alignment and go back to their tangled state and this is called an elastic contact caused by an entropic force.
To determine: The molecular explanation for the sign of
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
Chemistry
- Please draw the inverted chair forms of the products for the two equilibrium reactions shown below. Circle the equilibrium reaction that would have a AG = 0, i.e., the relative energy of the reactant (to the left of the equilibrium arrows) equals the relative energy of the product? [No requirement to show or do calculations.] CH3 CH3 HH CH3 1 -CH3arrow_forward5. Please consider the Newman projection of tartaric acid drawn below as an eclipsed conformer (1). Please draw the most stable conformer and two intermediate energy conformers noting that staggered conformers are lower in energy than eclipsed forms even if the staggered conformers have gauche relationships between groups. [Draw the substituents H and OH on the front carbons and H, OH and CO₂H on the back carbons based on staggered forms. -CO₂H is larger than -OH.] OH COH ICOOH COOH COOH 1 2 COOH COOH 3 4 Staggered Staggered Staggered (most stable) Indicate the number of each conformer above (1, 2, 3 and 4) that corresponds to the relative energies below. Ref=0 Rotation 6. (60 points) a. Are compounds 1 and 2 below enantiomers, diastereomers or identical? OH OH HO HO LOH HO HO OH 2 OH OH b. Please complete the zig-zag conformation of the compound (3R,4S)-3,4-dichloro-2,5-dimethylhexane by writing the respective atoms in the boxes. 3.arrow_forwardThe plutonium isotope with 144 neutrons Enter the chemical symbol of the isotope.arrow_forward
- The mass ratio of sodium to fluorine in sodium fluoride is 1.21:1. A sample of sodium fluoride produced 26.1 gg of sodium upon decomposition. How much fluorine was formed?arrow_forward32S 16 Enter your answers numerically separated by a comma. Np. Nn = 跖 ΟΙ ΑΣΦ Submit Request Answer ? protons, neutronsarrow_forward2. Which dimethylcyclohexane compounds shown below exhibit symmetry and therefore are not chiral and would not rotate plane polarized light. 1 CH3 CH CH3 CH3 2 3 CH3arrow_forward
- Can you please explain why the correct answer for this question is letter B? I chose letter A because I thought that a kinetic product was a 1,2-addition. Please give a detailed explanation.arrow_forwardCan you please explain why the answer is structures 2 and 3? Please include a detailed explanation and show how the synthesis can be done with those two structures.arrow_forwardCan you please explain why the correct answer to this question is option 2? I am having trouble understanding how and why. Please provide a detailed explanation and a drawing of how the diene and dienophile would create the product in the question.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning