![Precalculus with Limits](https://www.bartleby.com/isbn_cover_images/9781133947202/9781133947202_largeCoverImage.gif)
Concept explainers
To divide : using the long division
![Check Mark](/static/check-mark.png)
Answer to Problem 23RE
Explanation of Solution
Given information :
Concept Involved:
- Set up the long division.The divisor goes on the outside of the box. The dividend goes on the inside of the box. When you write out the dividend, make sure that you insert 0's for any missing terms.
- Divide 1st term of dividend by first term of divisor to get first term of the quotient.The quotient is written above the division box.Make sure that you line up the first term of the quotient with the term of the dividend that has the same degree.
- Take the term found in step 2 and multiply it times the divisor.Make sure that you line up all terms of this step with the term of the dividend that has the same degree.
- Subtract this from the line above.Make sure that you subtract EVERY term found in step 3, not just the first one.
- Repeat until done.You keep going until the degree of the "new" dividend is less than the degree of the divisor.Use the long division to find the other factor of the function
- Write out the answer. Your answer is the quotient that you ended up with on the top of the division box. If you have a remainder, write it over the divisor in your final answer.
The Division Algorithm : If
Calculation:
Step 1: Set up the long division. The divisor goes on the outside of the box. The dividend goes on the inside of the box. When you write out the dividend, make sure that you insert 0's for any missing terms.
Step 2: Divide 1st term of dividend by first term of divisor to get first term of the quotient. The quotient is written above the division box. Make sure that you line up the first term of the quotient with the term of the dividend that has the same degree.
Step 3: Take the term found in previous and multiply it times the divisor. Make sure that you line up all terms of this step with the term of the dividend that has the same degree.
Step 4: Subtract this from the line above.Make sure that you subtract EVERY term found in step 3, not just the first one.
Step 5: Repeat until done. You keep going until the degree of the "new" dividend is less than the degree of the divisor. Use the long division to find the other factor of the function
Step 6: Take the term found in previous and multiply it times the divisor. Make sure that you line up all terms of this step with the term of the dividend that has the same degree.
Step 7: Subtract this from the line above.Make sure that you subtract EVERY term found in step 3, not just the first one.
Conclusion:
By dividing the given polynomial
Chapter 2 Solutions
Precalculus with Limits
- Let a = (-4, 5, 4) and 6 = (1,0, -1). Find the angle between the vector 1) The exact angle is cos 2) The approximation in radians isarrow_forwardFind the (exact) direction cosines and (rounded to 1 decimal place) direction angles of = (3,7,6)arrow_forwardLet a = (-1, -2, -3) and 6 = (-4, 0, 1). Find the component of b onto a.arrow_forward
- Forces of 9 pounds and 15 pounds act on each other with an angle of 72°. The magnitude of the resultant force The resultant force has an angle of pounds. * with the 9 pound force. The resultant force has an angle of with the 15 pound force. It is best to calculate each angle separately and check by seeing if they add to 72°.arrow_forward= Let (6,2,-5) and = (5,4, -6). Compute the following: บี.บี. บี. นี = 2 −4(u. v) = (-4). v= ū. (-40) (ū. v) v =arrow_forwardLet ā-6+4j- 1k and b = 7i8j+3k. Find a. b.arrow_forward
- Find the volume of the parallelepiped determined by the vectors a = (3, 5, −1), ☎ = (0, 3, 1), c = (2,4,1).arrow_forwardFind the area of a triangle PQR, where P = (-5,6, -1), Q = (1, -3, -2), and R = (-5, -1,4)arrow_forward17. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.050. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) du 4√3- -4² Need Help? Read It SUBMIT ANSWER 18. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.051. Evaluate the integral. (Use C for the constant of integration.) - 49 dx x² +3 Need Help? Read It Watch It SUBMIT ANSWER 19. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.057. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 25+ x2 dxarrow_forward
- Let (5,3,-7) and = (2, -3, -6). = Compute the following: u× u = -4(u xv) ux (-4v) (+v) × v=arrow_forwardLet a = (4, -2, -7) and 6 = (2,5, 3). (ã − ò) × (ã + b) =arrow_forwardUse the graph of the function y = f (x) to find the value, if possible. f(x) 8 7 6 Q5 y 3 2 1 x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8+ Olim f(z) x-1+ O Limit does not exist.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)