
Concept explainers
(a)
Interpretation:
The following intermediate compound generated in the first or second cycle of the lipogenesis pathway is produced by (1) a dehydration reaction, (2) a hydrogenation reaction, or (3) a condensation reaction has to be identified.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. The fatty acid is synthesized in two parts. In the first part, there is citrate-malate shuttle system and in the second part, there is a cyclic process to synthesize saturated fatty acid.
The different reactions that are involved in the cyclic process are:
In hydrogenation reaction, a hydrogen molecule (H2) is added to an organic substance; in hydration reaction, a water molecule (H2O) is added to an unsaturated substrate; in the condensation reaction, two molecules combine to form a single product.
The first turn of the cyclic process produces four-carbon acyl group and the further turns add two carbon unit to the four-carbon acyl group. Therefore, the first turn has four carbon units and the second turn has six carbon unit in their intermediate compound.
(b)
Interpretation:
The following intermediate compound generated in the first or second cycle of the lipogenesis pathway is produced by (1) a dehydration reaction, (2) a hydrogenation reaction, or (3) a condensation reaction has to be identified.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. The fatty acid is synthesized in two parts. In the first part, there is citrate-malate shuttle system and in the second part, there is a cyclic process to synthesize saturated fatty acid.
The different reactions that are involved in the cyclic process are:
In hydrogenation reaction, a hydrogen molecule (H2) is added to an organic substance; in hydration reaction, a water molecule (H2O) is added to an unsaturated substrate; in the condensation reaction, two molecules combine to form a single product.
The first turn of the cyclic process produces four-carbon acyl group and the further turns add two carbon unit to the four-carbon acyl group. Therefore, the first turn has four carbon units and the second turn has six carbon unit in their intermediate compound.
(c)
Interpretation:
The following intermediate compound generated in the first or second cycle of the lipogenesis pathway is produced by (1) a dehydration reaction, (2) a hydrogenation reaction, or (3) a condensation reaction has to be identified.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. The fatty acid is synthesized in two parts. In the first part, there is citrate-malate shuttle system and in the second part, there is a cyclic process to synthesize saturated fatty acid.
The different reactions that are involved in the cyclic process are:
In hydrogenation reaction, a hydrogen molecule (H2) is added to an organic substance; in hydration reaction, a water molecule (H2O) is added to an unsaturated substrate; in the condensation reaction, two molecules combine to form a single product.
The first turn of the cyclic process produces four-carbon acyl group and the further turns add two carbon unit to the four-carbon acyl group. Therefore, the first turn has four carbon units and the second turn has six carbon unit in their intermediate compound.
(d)
Interpretation:
The following intermediate compound generated in the first or second cycle of the lipogenesis pathway is produced by (1) a dehydration reaction, (2) a hydrogenation reaction, or (3) a condensation reaction has to be identified.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. The fatty acid is synthesized in two parts. In the first part, there is citrate-malate shuttle system and in the second part, there is a cyclic process to synthesize saturated fatty acid.
The different reactions that are involved in the cyclic process are:
In hydrogenation reaction, a hydrogen molecule (H2) is added to an organic substance; in hydration reaction, a water molecule (H2O) is added to an unsaturated substrate; in the condensation reaction, two molecules combine to form a single product.
The first turn of the cyclic process produces four-carbon acyl group and the further turns add two carbon unit to the four-carbon acyl group. Therefore, the first turn has four carbon units and the second turn has six carbon unit in their intermediate compound.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
Organic And Biological Chemistry
- Select the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forwardb. H3C CH3 H3O+ ✓ H OHarrow_forward
- 2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forward
- Instructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forwardC. NaOMe, Br Brarrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,



