Concept explainers
The velocity of a particle is
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Vector Mechanics for Engineers: Dynamics
- The velocity of a particle is given by v={13t2i+7t3j+(2t+5)k}m/s, where t is in seconds. (a) If the particle is at the origin when t= 0, determine the magnitude of the particle's acceleration when t = 3 s. Express your answer using three significant figures and include the appropriate units. (b) Also, what is the x, y, z coordinate position of the particle at this instant? Enter the x, y, and z coordinates using three significant figures separated by commas.arrow_forwarda_av = 3.9051 m/s^2arrow_forwardThe acceleration of a particle is defined as a = 9 – 3t2. The particle starts at t 0 with v = 0 and x = 5 m. Determine: 1. The time when the velocity is again zero. 2. The position and velocity when t = 4 s Select one: A. t = 3; x(4) = 13 m and v(4) = -28 m/s %3D B. t = 1; x(4) = 13 m and v(4) = -28 m/s %3D !i! C. t = 0; x(4) = 13 m and v(4) = -28 m/s %3D %3D D. t = 3; x(4) = 13 m and v(4) = 28 m/s %3Darrow_forward
- The rectangular coordinates of a particle which moves with curvilinear motion are given by x = 10.75t +2.25t² - 0.45t³ and y = 6.90 + 17.43t - 2.62t², where x and y are in millimeters and the time t is in seconds, beginning from t = 0. Determine the velocity v and acceleration a of the particle when t = 8 s. Also, determine the first time that the velocity of the particle makes an angle of 30° with the positive x-axis. Answers: V = a = 17.1 10.75 i + i 5.24 i+ i 17.43 j) mm/s j) mm/s²arrow_forwardA ball is thrown so that the motion is defined by the equations x= 5t and y- 2+ 6 - 4.9r, where x and y are expressed in meters and t is expressed in seconds. Determine (a) the velocity at -I s, (b) the horizontal distance the ball travels before hitting the ground. Match each item to a choice Magnitude of V, Horizontal distance before it hits the ground: Choices E 749 m = 9.47 m # 6.28 m/s # 2.86 m/s 4.97 m # 8.62 m/s ::arrow_forwardThe motion of a particle is given by the relation a = 6t, where t is in sec and a in m/s2. If s = 8m and v = 4m/s when t = 1s, determine the s – a equation. a. s = (s/a)1/3 + a/6 + 6 b. s = (a/6)3 + a/6 – 1 c. s = (s/a)3 – a/6 + 6 d. none e. s = (a/6)3 + a/6 + 6arrow_forward
- The rectangular coordinates of a particle which moves with curvilinear motion are given by x= 10.00t+1.00t² - 0.55+³ and y = 6.32 + 10.10t - 2.22t², where x and y are in millimeters and the time t is in seconds, beginning from t = 0. Determine the velocity v and acceleration a of the particle when t = 8 s. Also, determine the first time that the velocity of the particle makes an angle of 18° with the positive x-axis. Answers: V = a = (i t = tel it i i+i S j) mm/s j) mm/s²arrow_forwardThe motion of the particle point is defined as x = 100t - 50 sin t, y = 100 - 50 cos t, the units of x and y are millimeters (mm) and the unit of is seconds. Draw the trajectory of the material point in the time interval 0 ≤ t ≤ 2π, (a) the magnitude of the minimum and maximum velocity that the material point can reach, and (b) find the time, position, and direction of the speed at that time.arrow_forwardThe position of a particle as a function of time t, is given by x(t) = at +bt² - ct³ where a, b and care constants. When the particle attains zero acceleration, then its velocity will be? A B с D a+ E + a+ a+ b² 4c b² 2c b² 3carrow_forward
- 3. The spatial motion of a particle is described by X = 3t 2 + 4t y = -4t 2 + 3t Z = -6t +9 where the coordinates are measured in feet and the time t is in seconds. (a) Determine the velocity and acceleration vectors of the particle as functions of time. (b) Verify that the particle is undergoing plane motion (the motion is not in a coordinate plane) by showing that the unit vector perpendicular to the plane formed by v and a is constant.arrow_forwardA body moves along a linear path and its rate of change of velocity varies with time and is written as a=2-3t, where t is the time in second. After 5 second, from start of observation its velocity is determined to be 20 m/s. After 10 second from start of observation, the body is at 85 m far from the origin. Determine the following:a. Rate of change of velocity and velocity at the start of motion.b. Distance from the origin at the start of observationc. Time after start of observation in which the velocity becomes zero.arrow_forwardDynamics of Rigid Bodies - Mechanical Engineering The velocity of a particle moving in the x-y plane is given by (6.91i + 7.17j) m/s at time t = 5.61 s. Its average acceleration during the next 0.017 s is (2.7i + 4.3j) m/s^2. Determine the velocity v of the particle at t = 5.627 s and the angle O between the average-acceleration vector and the velocity vector at t = 5.627 s. Subject: Mechanical Engineeringarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY