Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.3, Problem 11.81P
To determine
(a)
The initial velocity of the piston rod.
To determine
(b)
The distance by piston rod as it is brought to rest.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An engine driver suddenly puts on his brake
and shuts off steam when he is running at full speed; in the first
second afteruwards the train travels 28 m and in the next second 26
m. Find (i) the original speed of the train, (ii) the time before it comes
to rest, (iii) the distance it will travel in that interval, asuming the
brake to cause a constant retardation.
Find also the time the train will take, if it be 30 m long, to pass
a spectator standing at a point 150 m ahead of the train at the
instant when the brake was applied.
Question 2: For a 1-kg ball being pushed by a rod in the vertical path
with equation r = 0.50, where is in radian and r is in meter. At the
instant shown, if it has = 2 rad/s and = 4 rad/s², determine its
acceleration.
(a)
1.14 m/s²
(b) 7.05 m/s²
(c) 7.14 m/s²2
(d) 7.23 m/s²
r
II
π
2
A lift is moving down with acceleration a. A man
in the lift drops a ball inside the lift. The acceleration
of the ball as observed by the man in the lift and
a man standing stationary on the ground are
respectively
Chapter 11 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 11.1 - A bus travels the 100 miles between A and B at 50...Ch. 11.1 - Two cars A and B race each other down a straight...Ch. 11.1 - A snowboarder starts from rest at the top of a...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The vertical motion of mass A is defined by the...Ch. 11.1 - A loaded railroad car is rolling at a constant...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - The motion of a particle is defined by the...Ch. 11.1 - A girl operates a radio-controlled model ear in a...Ch. 11.1 - The motion of a particle is defined by the...
Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is directly...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece is by electronic equipment that is...Ch. 11.1 - A projectile enters a resisting medium at x=0 with...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Starting from x=0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Experimental data indicate that in a region...Ch. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v=v0[1sin(t/T)] ....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A motorist is travelling at 54 km/h when she...Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Two rockets are launched at a fireworks display....Ch. 11.2 - Car A is parked along the northbound lane of a...Ch. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - Slider block B moves to the right with a constant...Ch. 11.2 - At the instant shown, slider block B is moving...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t=0 and moves upward...Ch. 11.2 - Block A starts from rest at t=0 and moves downward...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Block B moves downward with a constant velocity of...Ch. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - The system shown starts from rest, and the length...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.64PCh. 11.3 - Prob. 11.65PCh. 11.3 - A parachutist is in free fall at a rate of 200...Ch. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - Prob. 11.70PCh. 11.3 - Prob. 11.71PCh. 11.3 - A car and a truck are both traveling at the...Ch. 11.3 - Solve Prob. 11.72, assuming that the driver of the...Ch. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - An elevator starts from rest and moves upward,...Ch. 11.3 - Car A is traveling at 40 mi/h when it enters a 30...Ch. 11.3 - An accelerometer record for the motion of a given...Ch. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - A training airplane has a velocity of 126 ft/s...Ch. 11.3 - Shown in the figure is a portion of the...Ch. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Prob. 11.86PCh. 11.3 - Prob. 11.87PCh. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Blocks A and B are released from rest in the...Ch. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - Prob. 11.96PCh. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine "throws" baseballs...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - What flows from a drain spout with an initial...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h=2.5...Ch. 11.4 - The nozzle at A discharges cooling water with an...Ch. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - The pitcher in a softball game throws a ball with...Ch. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - Prob. 11.114PCh. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Shore-based radar indicates that a ferry leaves...Ch. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Knowing that at the instant shown block B has a...Ch. 11.4 - Knowing that at the instant shown block A has a...Ch. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - The assembly of rod A and wedge B starts from rest...Ch. 11.4 - Prob. 11.127PCh. 11.4 - Conveyor belt A, which forms a 20° angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Instruments in airplane A indicate that; with...Ch. 11.4 - When a small boat travels north at 5 km/h, a flag...Ch. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - A race car travels around the track shown at a...Ch. 11.5 - A child walks across merry go-round A with a...Ch. 11.5 - Determine the smallest radius that should be used...Ch. 11.5 - Prob. 11.134PCh. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - An airplane flying at a constant speed of 240 m/s...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - Three children are throwing snowballs at each...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - Prob. 11.150PCh. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - Prob. 11.153PCh. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Prob. 11.159PCh. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - Prob. 11.161PCh. 11.5 - The path of a particle P is a limacon. The motion...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Prob. 11.164PCh. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - To study the performance of a racecar a high-speed...Ch. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - Pin C is attached to rod BC and slides freely in...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - Prob. 11.173PCh. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - Prob. 11.177PCh. 11.5 - Prob. 11.178PCh. 11.5 - Prob. 11.179PCh. 11.5 - Prob. 11.180PCh. 11.5 - Prob. 11.181PCh. 11 - The motion of a particle is defined by the...Ch. 11 - A drag racing car starts from rest and moves the...Ch. 11 - A particle moves in straight line with the...Ch. 11 - Prob. 11.185RPCh. 11 - Prob. 11.186RPCh. 11 - Collar A starts form rest at t=0 and moves...Ch. 11 - Prob. 11.188RPCh. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Prob. 11.191RPCh. 11 - Prob. 11.192RPCh. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. The system shown begins its motion from rest and each component moves with a constant acceleration. If the relative acceleration of block C with respect to collar B is 60 mm / s2 upwards and the relative acceleration of block D with respect to block A is 110 mm / s2 downwards, determine: a) The velocity of block C after 3 s. b) The change in position of block D after 5 s. They solve in the English system.arrow_forwardA motorcyclist is moving on a vertical circular path with a radius of 200 m and is accelerating at a rate of 0.4t m/s2 along the path, where t is in seconds. If he starts from rest, determine the tangential acceleration when he moves 60 degrees from the initial point.a. 6.12 m/s2 b. 7.73 m/s2c. 5.86 m/s2 d. 8.24 m/s2arrow_forwardI need the answer as soon as possiblearrow_forward
- This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A motorist starts from rest at Point A on a circular entrance ramp when t = 0, increases the speed of her automobile at a constant rate and enters the highway at Point B. Her speed continues to increase at the same rate until it reaches 85 km/h at Point C. Determine the magnitude of the total acceleration when t = 20 s. The magnitude of the total acceleration is m/s2.? Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also questions here I post, I receive wrong answers from them on a regular basis!!. Please go through the question and working out step by step when you finish them!!. Appreciate your time!.arrow_forwardA. Show the complete solutionarrow_forwardDYNAMICS OF RIGID BODIES (RECTILINEAR MOTION WITH CONSTANT ACCELERATION) A body starts with a velocity of 3 m/s and moves in a straight line with a constant acceleration. If its velocity at the end of 5 seconds is 5.5 m/s, determine the following:(a)the uniform acceleration(b)distance travelled in 10 seconds.arrow_forward
- Show the complete solutions and computations. ty!arrow_forward4- A monorail train starts from rest on a curve of radius 400 m and accelerates at the constant rate a,. If the maximum total acceleration of the train must not exceed 1.5 m/ s2, determine (a) the shortest distance in which the train can reach a speed of 72 km/h, (b) the corresponding constant rate of acceleration at.arrow_forward2. The horizontal rod OA rotates about a vertical shaft according to the relation 6 = 3t°, where 0 and t are expressed in rad/s and seconds, respectively. A 500 g collar B is held by a cord with a breaking strength of 37 N. Neglecting friction, determine, immediately after the cord breaks: a. How long it takes for the cord to break b. The relative acceleration of the collar with respect to the rod. c. The magnitude of the horizontal force exerted on the collar by the rod. Note: the horizontal force corresponds to ég direction d. When the collar breaks free from its initial position of 0.5 m and hits the stop at A which is 0.62 m from point O, calculate the angular velocity [rad/s] at this state. *Use initial angular velocity from when cord broke in order to solve for final angular velocity using conversation of angular momentum. 0.5 marrow_forward
- An athlete pulls handle A to the left with a constant velocity of 0.5 m/s. Determine (a) the velocity of the weight B, (b) the relative velocity of weight B with respect to the handle A.arrow_forwardA car moved on a horizontal path from rest at constant acceleration from point A until it reached its maximum speed when passing by At point b it took 4 seconds, and after point B it continued its movement but at a slowdown of -3 m / s2 until it stopped at c Categorical The idling distance of 13.5 m. Find: 1. The distance the car traveled while accelerating from a to b 2. The car's rate of acceleration (acceleration) 3. The car's maximum speed from point b 4. The time the car took when slowing down from b to carrow_forwardA box is moving in the i direction with a constant acceleration. A mass, suspended from the top of the box by a linear spring (unstretched length of zero), is moving to the right as well and isn't moving with respect to the box (the spring isn't changing in length and θ is constant). The force exerted by the spring on the mass is given by its spring constant k times its extension. For the present case, the spring is extended 5 cm from its rest length, k = 30 N/m and m = 0.15 kg. What is the angle θ equal to, and what is the acceleration of the box? You can solve for this without using the computerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY