Concept explainers
Car A is traveling at 40 mi/h when it enters a 30 mi/h speed zone. The driver of car A decelerates at a rate of 16 ft/s2 until reaching a speed of 30 mi/h, which she then maintains. When car B, which was initially 60 ft behind car A and traveling at a constant speed of 45 mi/h, enters the speed zone, its driver decelerates at a rate of 20 ft/s2 until reaching a speed of 28 mi/h. Knowing that the driver of car B maintains a speed of 28 mi/h, determine (a) the closest that car B comes to car A, (b) the time at which car A is 70 ft in front of car B.
(a)
The closest that car B comes to car A.
Answer to Problem 11.76P
Explanation of Solution
Given information:
When,
For,
The v-t curve of two cars is as shown:
At,
Acceleration of A,
And,
Again, similarly acceleration of B,
Car B will continue to overtake car A while
For his time interval,
Then at,
Thus,
(b)
The time at which car A is 70 feet in front of car B.
Answer to Problem 11.76P
Explanation of Solution
Given information:
When,
For,
The v-t curve of two cars is as shown:
At,
Acceleration of A,
And,
Again, similarly acceleration of B,
Car B will continue to overtake car A while
For his time interval,
Then at,
Thus,
Since,
Then for,
Want to see more full solutions like this?
Chapter 11 Solutions
Vector Mechanics for Engineers: Dynamics
- Car A is traveling at a constant speed vA = 143 km/h at a location where the speed limit is 100 km/h. The police officer in car P observes this speed via radar. At the moment when A passes P, the police car begins to accelerate at the constant rate of 5.1 m/s2 until a speed of 168 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. Neglect any nonrectilinear motion of P.arrow_forwardCar A is traveling at a constant speed VA = 144 km/h at a location where the speed limit is 100 km/h. The police officer in car P observes this speed via radar. At the moment when A passes P, the police car begins to accelerate at the constant rate of 5.8 m/s² until a speed of 175 km/h is achieved, and that speed is then maintained. Determine the distances required for the police officer to overtake car A. Neglect any nonrectilinear motion of P. A Answer: s= i VA P marrow_forwardCar A is traveling at a constant speed VA = 144 km/h at a location where the speed limit is 100 km/h. The police officer in car P observes this speed via radar. At the moment when A passes P, the police car begins to accelerate at the constant rate of 5.8 m/s² until a speed of 175 km/h is achieved, and that speed is then maintained. Determine the distances required for the police officer to overtake car A. Neglect any nonrectilinear motion of P. A Answer: s= VA i 941.685 NIG P marrow_forward
- Car A is traveling at a location where the speed limit is 100 km/h. The police officer in car Pobserves this speed via radar. The driver of car A is traveling at VA = 133 km/h as it passes P, but over the next 5.3 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 4.2 m/s² until a speed of 163 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. Answer: s= i VA P ! marrow_forwardCar A is traveling at a location where the speed limit is 100 km/h. The police officer in car Pobserves this speed via radar. The driver of car A is traveling at va = 123 km/h as it passes P, but over the next 4.5 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 4.2 m/s2 until a speed of 160 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. VA Answer: s = i marrow_forwardCar A is traveling at a location where the speed limit is 100 km/h. The police officer in car Pobserves this speed via radar. The driver of car A is traveling at vA = 126 km/h as it passes P, but over the next 4.2 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 5.7 m/s? until a speed of 165 km/h is achieved, and that speed is then maintained. Determine the distance s required for the police officer to overtake car A. Answer:s= iarrow_forward
- Car A is traveling at a location where the speed limit is 100 km/h. The police officer in car Pobserves this speed via radar. The driver of car A is traveling at VA = 138 km/h as it passes P, but over the next 4.3 seconds, the car uniformly decelerates to the speed limit of 100 km/h, and after that the speed limit is maintained. At the moment when A passes P, the police car begins to accelerate at the constant rate of 5.0 m/s² until a speed of 167 km/h is achieved, and that speed is then maintained. Determine the distances required for the police officer to overtake car A. Answer: s= i marrow_forwardA car and a truck are both traveling at the constant speed of 35 mi/h; the car is 40 ft behind the truck. The driver of the car wants to pass the truck, i.e., he wishes to place his car at B , 40 ft in front of the truck, and then resume the speed of 35 mi/h. The maximum acceleration of the car is 5 ft/s2 and the maximum deceleration obtained by applying the brakes is 20 ft/s2. What is the shortest time in which the driver of the car can complete the passing operation if he does not at any time exceed a speed of 50 mi/h? Draw the v-t curve.arrow_forwardCar A is traveling at a constant speed of vA = 130 kph at a location where the speed limit is 100 kph. The police officer in car P observes this speed via radar. As Car A passes P, the car uniformly decelerates to the speed limit for 5 seconds and maintained the motion. Meanwhile, the police car begins to accelerate at the constant rate of 6 m/s2 until a velocity of 160 kph is achieved, and that speed is maintained. Determine the deceleration of car A to reach the speed limit,What is the distance traveled by the police to overtake car A, How long did it take for the police officer to overtake car A?arrow_forward
- A subway car leaves station A; it gains speed at the rate of 4 ft/s² for 6 s and then at the rate of 6 ft/s² until it has reached the speed of 48 ft/s. The car maintains the same speed until it approaches station B; brakes are then applied, giving the car a constant deceleration and bringing it to a stop in 6 s. The total running time from A to B is 40 s. Determine the distance between stations A and B. . Do not type the solution. Show the complete computation/solution with the necessary graphs or diagrams.arrow_forwardA Toyota Innova starts from rest at t = 0 and travelling straight along NLEX with a constant acceleration of 20 m/s until it reaches a speed of 80 kph, then maintains this speed. Also, when t = 0, a Ford Mustang located 3.5 km behind is traveling toward the Innova at a constant speed of 110 kph. Determine (a) the time and (b) the distance traveled by the Innova and Mustang (from t = 0) when they pass each other.arrow_forwardThis is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A motorist starts from rest at Point A on a circular entrance ramp when t = 0, increases the speed of her automobile at a constant rate and enters the highway at Point B. Her speed continues to increase at the same rate until it reaches 85 km/h at Point C. Determine the magnitude of the total acceleration when t = 20 s. The magnitude of the total acceleration is m/s2.? Note: please show step by step solution. Hence, double check the solution. For correction purposes!. I require handwritten working out please!. Kindly, please meticulously, check the image for conceptual understanding and for extra information purposes!. Also questions here I post, I receive wrong answers from them on a regular basis!!. Please go through the question and working out step by step when you finish them!!. Appreciate your time!.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY