Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.8P
To determine
The number of specimen fails in the test.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a tensile test for an aluminum alloy, the sample is 2 inches long and 0.5 inches in diameter. The proportional portion of the tension stress-strain diagram for an aluminum alloy is shown below.
It the diameter change of the sample was also monitored during the above test, and it was found that the lateral strain of the sample is 1/3 of its axial longitudinal strain, what is the Poisson' ratio of the material under test: ___. Calculate your answer to 2 decimal place.
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.3 mm; the specimen fractured at a load of 3000 N when the distance between the support points was 40 mm. Another test is to be performed on a specimen of the same material, but one that has a square cross section of 18 mm length on each edge. At what load would you expect this specimen to fracture if the support point separation is maintained at 40 mm?
During the tensile test a sample of metal having an initial diameter of 2.00 in., is reduced to a
30% reduction in area. If the stress-strain behavior of this metal sample is expressed as o=80,000€ 0.25
psi, determine the new yield strength of the sample.
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A single crystal of a metal is oriented for a tensile test such that its slip plane normal makes an angle of 64.0° with the tensile axis. Three possible slip directions make angles of 30°, 48°, and 78° with the same tensile axis. (a) Which of these three slip directions is most favored? i (b) If plastic deformation begins at a tensile stress of 1.3 MPa (188.6 psi), determine the critical resolved shear stress for this metal. i MPаarrow_forwardThe (G-E) diagram obtained in the tensile test performed on a metal sample with a diameter of 16 mm is as follows. The loads at points A, B and C and the elongation measured on l. 16 cm gauge length were determined as follows: B A B C Load (kgf) 4800 8400 7200 Elongation (mm) 0.192 28.8 38.4 c) Calculate the fracture work and the maximum elastic energy the metal rod can store. d) Find the cross-sectional area of a 6 m long rod made of this metal such that it can carry 12 tons of load with 2 times the safety of yield strength. How long does the rod extend under this load?arrow_forwardQ.1 The yield stresses (oy) have been measured using steel and aluminum specimens of various grain sizes, as follows: Material D (µm) σΥ (MPa) Steel 60.5 160 136 128 Aluminum 11.1 235 100 223 (a) Determine the coefficients o and kỵ in the Hall- Petch for these two materials. (b) Determine the yield stress in each material for a grain size of d=26 um.arrow_forward
- Solvearrow_forwardA ceramic specimen having a circular cross section of radius 2.7mm is subjected to a load of 900N. The distance between the support point is 43mm. Another test is to be performed on a specimen of this same material, but one that has a square cross section of 10mm on each edge. At what load (in N) would you expect the specimen to fracture if the support point separation is 38mm?arrow_forward5.7 During the test of a specimen in a tensile testing ma- chine, it is found that the specimen elongates 0.0024 inch between two punch marks that are initially two inches apart. Evaluate the strain.arrow_forward
- During a high cycle fatigue test, a metallic specimen is subjected to cyclic loading with a mean stress of +140 MPa, and a minimum stress of -70 MPa. What is the R- ratio (minimum stress to maximum stress) for this cyclic loading?arrow_forward(a) Using Animated Figure, compute the rupture lifetime for an S-590 alloy that is exposed to a tensile stress of 100 MPa at 925°C. (b) Determine the same value from the Larson-Miller plot of Animated Figure, which is for this same S-590 alloy. (a) i hours (b) i hoursarrow_forwardQuestion 4. A tensile test is carried out on a bar of mild steel of diameter 2 cm. The bar yields under a load of 80 Kn. It reaches a maximum load of 150 kN, and breaks finally at a load of 70 kN. Estimate: a)the tensile stress at the yield point b)the ultimate tensile stress c)the average stress at the breaking point if the diameter of the fractured neck is 1 cm.arrow_forward
- A Brinell hardness tester with a diameter of 10 mm and a load of 500 kg gives an impression with a diameter of 1.62 mm in a steel alloy. Calculate the Brinell hardness (HB) in the steel alloyarrow_forwardA 5-mm-thick rectangular alloy bar is subjected to ajtensile load P by pins at A and B, as shown in the figure. The width of the bar is w = 33 mm. Strain gages bonded to the specimen measure the following strains in the longitudinal (x) and transverse (y) directions: €, =710 με and ε,--255 με (a) Determine Poisson's ratio for this specimen. (b) If the measured strains were produced by an axial load of P = 24 kN, what is the modulus of elasticity for this specimen? Answers: (a) v= (b) E= GPaarrow_forwardQuestion: A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa sqrt(m) (90 ksi sqrt(in.)) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning