Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 14CQ
To determine
The test to calculate the maximum possible crack length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?
A ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?
q3
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A high-strength steel has a yield strength of 1380 MPa and fracture toughness of 91 MPavm. A surface crack of 2.5 mm is found at the surface. At what max. applied stress level will catastrophic failure occur? (Y = 1.00 for internal crack, and Y=1.12 for surface crack)arrow_forward2. The Goodman diagram relates oa and om for fatigue failure after a specific number of cycles Nf, where da is the cyclic stress amplitude, and om the mean stress. For a steel specimen it is found that oa oa (0). [1- (om/OTS)] where Ors is the metal's tensile stress (375MPa), and oa (0)~0.450TS is the 107 cycle fatigue limit at zero mean stress. Assuming the specimen is cycled repeatedly between 0 stress and a peak stress, what is the maximum peak stress if failure in < 107 cycles is to be avoided? Ans: 233 MPaarrow_forwardAn aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 34 MPaym. It has been determined that fracture results at a stress of 221 MPa when the maximum (or critical) internal crack length is 2.94 mm. a) Determine the value of Yona for this same component and alloy at a stress level of 287 MPa when the maximum internal crack length is 1.47 mm. MPaymarrow_forward
- 2. Please estimate the number of cycles to failure of a steel specimen under tensile fatigue loading with the following parameters. The R ratio is 3, mean stress 200 MPa, yield strength 450 MPa, ultimate tensile strength 560 MPa, Young’s modulus 200 GPa, KIC = 140 MPa . Assume the initial crack length is 0.1 mm.arrow_forward2- What is the largest size (mm) internal through crack that a thick plate of aluminium alloy 7075-T651 can support at an applied stress of (a) three-quarters of the yield strength and (b) one-half of the yield strength? Assume Y = 1. for 7075-T651, KỊC = 24.2 MPa ym and oYS = 495 MPa.arrow_forwardA component made of Aluminium 6061-T651 has an edge crack with length equal to 15 mm, as shown The yield stress of the material is oy = 280 MPa and its fracture toughness (Kic) ranges from 40 MN/m3/2 to 60 MN/m³/2 Consider now the same edge crack in a semi-infinite plate. Determine the critical stress to avoid fracture. P I I I I ← 15 mm P↓ 100 mm 30 mmarrow_forward
- 2. The Goodman diagram relates oa and om for fatigue failure after a specific number of cycles N₁, where da is the cyclic stress amplitude, and on the mean stress. For a steel specimen it is found that a = a (0). [1- (om/OTS)] where GTS is the metal's tensile stress (375MPa), and oa (0)~0.450TS is the 107 cycle fatigue limit at zero mean stress. Assuming the specimen is cycled repeatedly between 0 stress and a peak stress, what is the maximum peak stress if failure in < 107 cycles is to be avoided? Ans: 233 MPaarrow_forward(b) An aluminium plate (100 mm width x 300 mm height x 4 mm thick) with a centre-crack is subjected to a mode-l service load of 40 kN. Assume that the fracture toughness of the material is 24 MPa Vm and Y-1.0. (ii) What is the safety factor on crack length? Assume that the yield strength of aluminium is 425 MPa.arrow_forwardFor a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forward
- 3arrow_forwardA very large, steel plate of yield stress 200 MPa and Poisson's ratio 0.3 has a crack at the centre of length 34 mm, orientated along the x-axis. If the plate is subjected to far field tensile loading of magnitude 177 MPa and is assumed to be in a state of plane stress, determine the extent of the plastic region at the crack tip, along the x-axis. You may assume Poisson's ratio is (1/3). Express your answer as an integer value of mm.arrow_forwardB- Match the items from list A with the suitable ones from list B: A B 1 In a principal stress plot the Griffith a criterion is the crack will grow and the failure process is initiated. 2 b the ratio between the uniaxial A special feature for the Mohr- Coulomb criterion, compressive strength and the tensile strength is (8). 3 с When the tensile stress at the tip of the crack exceeds a certain value characteristic of the material depends on the normal stress acting over the failure plane 4 d The principal stress plot of the Griffith criterion, the orientation of the failure plane is independent of the confining stress. 5 e The critical shear stress (Tmax) for which shear failure occurs, represented by a parabola ending in a straight linearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning