Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 15CQ
To determine
The percentage of plastic strain prior to fracture for mode I fracture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 34
MPaym. It has been determined that fracture results at a stress of 221 MPa when the maximum (or critical)
internal crack length is 2.94 mm.
a) Determine the value of Yona for this same component and alloy at a stress level of 287 MPa when the
maximum internal crack length is 1.47 mm.
MPaym
A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?
A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips.a. Determine the tensile stresses at yield and at fracture.b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Similar questions
- A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips. a. Determine the tensile stresses at yield and at fracture. b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length. Step-by-step solution: Step 1 of 4 Given that: Width of the specimen, b = 1 in Thickness of the specimen, t = 0.25 in Yield load on the specimen, Py = 12.5 kips Fracture load on the specimen, Pf = 17.5 kips Gauge length, L = 2 in Percentage of yield stress = 60%arrow_forwardA ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?arrow_forwardFor a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forward
- For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the modulus of elasticity is 115 GPa (16.7 x106 psi). (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 325 mm2 (0.5 in.2) without plastic de- formation? (15pts)(b) If the original specimen length is 115 mm (4.5 in.), what is the maximum length to which it may be stretched without causing plastic deformation?(15pts)arrow_forwardA steel specimen is tested in tension. The specimen is 25 mm wide by 12.5 mm thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 160 kN and fractured at 214 kN. a. Determine the tensile stress at yield and at fracture. b. If the original gauge length was 100 mm, estimate the gauge length when the specimen is stressed to 1/2 the yield stress.arrow_forwardA brass specimen of the circular cross-section is fractured at 151 kN force and the final length of the specimen at fracture is 48 mm. The fracture strength of the specimen is found to be 72 kN/mm?. The percentage of elongation of the specimen is 44 %. Determine the following (i) Diameter of the specimen, ii) Initial length of the specimen, iii) Stress under an elastic load of 15 kN, iv) Young's Modulus if the elongation is 1.5 mm at 15 kN (v) Final diameter if the percentage of reduction in area is 21 %. ( Initial Cross-sectional Area (in mm?) The Diameter of the Specimen (in mm) Initial Length of the Specimen (in mm) Stress under the elastic load (in N/mm?) Young's Modulus of the Specimen (in N/mm2) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forward
- A brass specimen of the circular cross-section is fractured at 151 kN force and the final length of the specimen at fracture is 49 mm. The fracture strength of the specimen is found to be 74 kN/mm2. The percentage of elongation of the specimen is 42 %. Determine the following (i) Diameter of the specimen ii) Initial length of the specimen iii) Stress under an elastic load of 16 kN iv) Young's Modulus if the elongation is 1.6 mm at 16 kN (v) Final diameter if the percentage of reduction in area is 20 % solve: Initial Cross-sectional Area (in mm2) = The Diameter of the Specimen (in mm) = Initial Length of the Specimen (in mm) =arrow_forwardA steel specimen is tested in tension. The specimen is 25 mm wide by 5 mm thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 55 kN and fractured at 78 kN.a. Determine the tensile stresses at yield and at fracture.b. Estimate how much elongation would occur at 60% of the yield stress in a 50-mm gauge length.arrow_forwardA steel specimen is tested in tension. The specimen is 1" wide by 0.5" thick in the test region. By monitoring the stresses from the testing machine, it was found that the specimen yielded at a stress of 72 ksi and fractured at 96 ksi. (a). Determine the tensile loads at yield and at fracturearrow_forward
- A steel specimen is tested in tension. The specimen is 1 in. wide by 0.5 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 36 kips and fractured at 48 kips.a. Determine the tensile stress at yield and at fracture.b. If the original gauge length was 4 in., estimate the gauge length when the specimen is stressed to 1/2 the yield stress.arrow_forward2. Please estimate the number of cycles to failure of a steel specimen under tensile fatigue loading with the following parameters. The R ratio is 3, mean stress 200 MPa, yield strength 450 MPa, ultimate tensile strength 560 MPa, Young’s modulus 200 GPa, KIC = 140 MPa . Assume the initial crack length is 0.1 mm.arrow_forwardq3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning