Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 26CQ
To determine
The number of cycles to failure in polycrystalline ceramics.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q7> Ductile-to-brittle transition temperature (DBTT) is a very important parameter in the design of metallic
materials for engineering applications. It has been well known that most of BCC and HCP metals show the DBT
phenomenon; however, there is no DBTT in FCC metals.
(a) Explain the reason in terms of deformation and fracture. You must compare the BCC and FCC.
(b) The ductile fracture surface consists of many dimples.
Explain their formation mechanism from the concept of point defects.
(c) There are two types in the brittle fracture. Explain and Compare them.
i need the answer quickly
In an engineering application, the material is a strip of iron with a fixed crystallographic structure subject to a tensile load during operation. The part
failed (yielded) during operation and needs to be replaced with a component with better properties. You are told that two other iron strips had failed
at yield stresses of 110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain size of 20 microns. The
diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of the new part C and would you recommend it for operation?
Select one:
Oa. 133.5 MPa, yes
O b.
OC.
Od
Oe.
120.5 MPa, no
129.5, yes
140.5, no
123.5 MPa, yes
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Similar questions
- A component made of Aluminium 6061-T651 has an edge crack with length equal to 15 mm, as shown The yield stress of the material is oy = 280 MPa and its fracture toughness (Kic) ranges from 40 MN/m3/2 to 60 MN/m³/2 Consider now the same edge crack in a semi-infinite plate. Determine the critical stress to avoid fracture. P I I I I ← 15 mm P↓ 100 mm 30 mmarrow_forwardAfter an inspection it is found that a structural ceramic part has no flaws greater than 100 micrometers in size, calculate the maximum service stress (in MPa) available with SiC. Assume that Y= 1arrow_forwardGiven your understanding of what initiates and controls failure in materials, which of the following will increase the failure strength or lifetime of a test piece or component and why? a. Decreasing the difference between the maximum and minimum stress values, as this effects the stress concentration factor b. Decreasing the temperature below the brittle-ductile transition temperature, to make it harder C. Polishing to reduce surface defects Od. Increasing its volume, to give a larger cross sectional area Oe. Increasing the grain size so there are less grain boundaries to initiate failurearrow_forward
- Narrow bars of aluminum are bonded to the two sides of a thick steel plate as shown. Initially, at T₁ = 70°F, all stresses are zero. Knowing that the temperature will be slowly raised to T₂ and then reduced to T₁, determine (a) the highest temperature T₂ that does not result in residual stresses, (b) the temperature T₂ that will result in a residual stress in the aluminum equal to 58 ksi. Assume aa = 12.8 x 10-6/°F for the aluminum and a = 6.5 × 10-6/°F for the steel. Further assume that the aluminum is elastoplastic with E = 10.9 × 106 psi and ay = 58 ksi. (Hint: Neglect the small stresses in the plate.) Fig. P2.121arrow_forwardA single crystal of BCC iron is subjected to tensile stress of 100 MPa along the [001] direction. Which of the two slip systems ((211) –[ 111 ] or (321)–[ 111 ]) is going to yield first?arrow_forwardA ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?arrow_forward
- The deformation per unit length is called O(A) Tensile stress O(B) Compressive stress OCC) Shear stress O(D) Strainarrow_forwardExplain why the experimental strength of materials are lower than their theoretical strengths. BI4 Pagrarrow_forwardA cylindrical specimen of cold-worked steel has a Brinell hardness of 240. If the specimen remained cylindrical during deformation and its original radius was 11.8 mm, determine its radius after deformation. For steel, the dependence of tensile strength on percent cold work is shown in Animated Figure 7.19b. i mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning