Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 7CQ
To determine
Whether the fracture strength of steel is increased or decreased as the yield strength is increased by heat treatment.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
q3
A high-strength steel has a yield strength of 1380 MPa and fracture toughness of 91 MPavm. A
surface crack of 2.5 mm is found at the surface. At what max. applied stress level will catastrophic
failure occur? (Y = 1.00 for internal crack, and Y=1.12 for surface crack)
An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 34
MPaym. It has been determined that fracture results at a stress of 221 MPa when the maximum (or critical)
internal crack length is 2.94 mm.
a) Determine the value of Yona for this same component and alloy at a stress level of 287 MPa when the
maximum internal crack length is 1.47 mm.
MPaym
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2- What is the largest size (mm) internal through crack that a thick plate of aluminium alloy 7075-T651 can support at an applied stress of (a) three-quarters of the yield strength and (b) one-half of the yield strength? Assume Y = 1. for 7075-T651, KỊC = 24.2 MPa ym and oYS = 495 MPa.arrow_forwardA.mechn.arrow_forwardA steel specimen is tested in tension. The specimen is 50 mm wide by 25 mm thick in the test region.The specimen yields at a load of 160 kN and fractures at 215 kN. Determine the tensile stress at fracture.arrow_forward
- The steel has yield strength of 550 MPa and a fracture toughness of 40 MPa m^1/2.What will be the limiting design stress if the maximum tolerable crack is 3.0 mm in length and no plastic deformation is permitted?arrow_forwardAt the ultimate tensile strength. (a) The true stress is at its maximum. (b) The specimen always fractures. (c) The maximum load-carrying capacity is experienced. (d) The material yields.arrow_forwardI need the answer as soon as possiblearrow_forward
- A ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?arrow_forwardFor a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forwardQ7> Ductile-to-brittle transition temperature (DBTT) is a very important parameter in the design of metallic materials for engineering applications. It has been well known that most of BCC and HCP metals show the DBT phenomenon; however, there is no DBTT in FCC metals. (a) Explain the reason in terms of deformation and fracture. You must compare the BCC and FCC. (b) The ductile fracture surface consists of many dimples. Explain their formation mechanism from the concept of point defects. (c) There are two types in the brittle fracture. Explain and Compare them.arrow_forward
- Q3: A cylindrical specimen of steel having an original diameter of (12.8mm) is tensile tested to fracture and found to have engineering fracture strength of (450MP ). If its cross-sectional diameter at fracture is (10.7mm), determine: (1) the ductility in terms of percent reduction in area and (2) the true stress at fracture.arrow_forward(b) An aluminium plate (100 mm width x 300 mm height x 4 mm thick) with a centre-crack is subjected to a mode-l service load of 40 kN. Assume that the fracture toughness of the material is 24 MPa Vm and Y-1.0. (ii) What is the safety factor on crack length? Assume that the yield strength of aluminium is 425 MPa.arrow_forwardA steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips.a. Determine the tensile stresses at yield and at fracture.b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning