Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 3CQ
To determine
The increase in energy necessary to extend a crack in material when a brittle material reaches to fracture stress.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?
Which of the following statements regarding brittle failure and crack propagation is CORRECT?
Elastic energy is consumed when a crack propagates, due to unloading of a volume of material.
Energy is released when the surface area of a material increases, as a result of crack propagation.
O The stress at the tip of a crack is less than the nominal stress (force over the cross-sectional area of the
component) because the stress flows around the defect.
O The fracture toughness of a material is its resistance to an increase in the radius of curvature of a crack.
O A material will fail in brittle fashion when the stress intensity at the crack tip is greater than the fracture
toughness of the material.
A ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A structural component in the shape of a flat plate 20.8 mm thick is to be made from a metal with yield strength of 533 MPa and a critical fracture toughness of 22.0 MPa-m!2. Assume a crack forms in the plate, and the geometry of the crack yields a Y value of 1.5. If the plate is designed to a design stress equivalent to 0.3 times the yield strength, what is the critical crack length? Equations: 1/2 () Om К = 2 σο K. = YocTa %3D Ptarrow_forwardFor germanium at a tensile stress of 410 MPa and a temperature of 332C , what is the primary creep mechanism? The shear modulus of germanium is 41 GPa.arrow_forwardAt temperatures above the equi-cohesive temperature, the creep mechanism of grain boundary ____________ is observed.arrow_forward
- According to Irwin plastic deformation at the crack tip results in an apparently longer crack Kl= o √(a + ry) where ry is the radius of the plastic zone, what will the Kl solution became if we realize that Kl affects the size of . ry while ry also affects the size of klarrow_forwardcompare the effect of presence of a notch on ductile and brittle materials in terms of fracture behaviourarrow_forwardA metal is subjected to a stress alternating at 167 revolutions per minute between 335 MPa and -251.25 MPa. Assuming that f=1.09, and fatigue parameters are C=1.7 x 10-12 and n=2.91, what is the growth rate of a surface crack when it reaches a length 0.16 mm in units of nanometer per secondarrow_forward
- Failure of engineering materials A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 MPa is exposed to a stress of 1766 MPa. Assume that the parameter Y has a value of 1.6.If the largest surface crack is 0.5236 mm long, determine the critical stress .arrow_forwardA very large, steel plate of yield stress 200 MPa and Poisson's ratio 0.3 has a crack at the centre of length 34 mm, orientated along the x-axis. If the plate is subjected to far field tensile loading of magnitude 177 MPa and is assumed to be in a state of plane stress, determine the extent of the plastic region at the crack tip, along the x-axis. You may assume Poisson's ratio is (1/3). Express your answer as an integer value of mm.arrow_forwardA specimen of a 4340 steel alloy having a plane strain fracture toughness of 45 MPA/M is exposed to a stress of 1000 MPa (145,000 psi). Will this specimen experience fracture if it is known that the largest surface crack is 0.75 mm (0.03 in.) long? Why or why not? Assume that the parameter Y has a value of 1.0.arrow_forward
- q3arrow_forwardAn aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 34 MPaym. It has been determined that fracture results at a stress of 221 MPa when the maximum (or critical) internal crack length is 2.94 mm. a) Determine the value of Yona for this same component and alloy at a stress level of 287 MPa when the maximum internal crack length is 1.47 mm. MPaymarrow_forward2. a) As an engineer, choose a desired fracture mode in metals with one (1) reason. b) Sketch the fracture behaviour in metals. c) i. The modulus of elasticity of a metal alloy A is 260 GPa. Compute the specific surface energy if propagation of an internal crack of length 0.40 mm is observed when a stress of 63 MPa is applied to the alloy. ii. The elastic deformation energy of alloy A is 3.0 J/m². Based on the answer obtained in c)(i), show whether alloy A is an elastic deformation or a plastic deformation. iii. Interpret if alloy A can be classified as a brittle or a ductile material. d) i. A metal with an internal crack is loaded with a tensile stress of 15 MPa. If the crack length and the radius of curvature are 2.6 x 10-2 mm and 1.1 x 10-4 mm, compute its maximum stress. ii. The modulus of elasticity of the metal is 90 GPa and the specific surface energy is 2.6 J/m2. Based on its critical stress, show that the crack will not grow when a tensile stress of 15 MPa is loaded on it.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning