Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.14P
To determine
The characteristic strength of the batch of material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the modulus of elasticity is 115 GPa (16.7 x106 psi). (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 325 mm2 (0.5 in.2) without plastic de- formation? (15pts)(b) If the original specimen length is 115 mm (4.5 in.), what is the maximum length to which it may be stretched without causing plastic deformation?(15pts)
During a high cycle fatigue test, a metallic specimen is
subjected to cyclic loading with a mean stress of +140
MPa, and a minimum stress of -70 MPa. What is the R-
ratio (minimum stress to maximum stress) for this
cyclic loading?
A ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Similar questions
- A steel specimen is tested in tension. The specimen is 25 mm wide by 12.5 mm thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 160 kN and fractured at 214 kN. a. Determine the tensile stress at yield and at fracture. b. If the original gauge length was 100 mm, estimate the gauge length when the specimen is stressed to 1/2 the yield stress.arrow_forwardA cylindrical metal specimen 12.7 mm (0.5 in.) in diameter and 250 mm (10 in.) long is to be subjected to a tensile stress of 28 MPa (4000 psi); at this stress level, the resulting deformation will be totally elastic. (a) If the elongation must be less than 0.080 mm (3.2 x 10-3 in.), which of the metals in Table 6.1 are suitable candidates? O Steel O Nickel Brass O Magnesium O Aluminum O Copper O Titanium O Tungsten (b) If, in addition, the maximum permissible diameter decrease is 1.2 x 103 mm (4.7 × 105 in.) when the tensile stress of 28 MPa is applied, which of the metals that satisfy the criterion in part (a) are suitable candidates? O Aluminum O Magnesium O Steel O Tungsten O Copper O Brass O Titanium O Nickelarrow_forwardA thin plate of a ceramic material with E = 225 GPa is loaded in tension, developing a stress of 450 MPa. Is the specimen likely to fail if the most severe flaw present is an internal crack oriented perpendicular to the load axis that has a total length 0.25 mm and a crack tip radius of curvature equal to 1 μm?arrow_forward
- A single crystal of a metal is oriented for a tensile test such that its slip plane normal makes an angle of 64.0° with the tensile axis. Three possible slip directions make angles of 30°, 48°, and 78° with the same tensile axis. (a) Which of these three slip directions is most favored? i (b) If plastic deformation begins at a tensile stress of 1.3 MPa (188.6 psi), determine the critical resolved shear stress for this metal. i MPаarrow_forwardA structural component in the shape of a flat plate 24.3 mm thick is to be fabricated from a metal alloy for which the yield strength and plane strain fracture toughness values are 533 MPa and 22.0 MPa-m1/2, respectively. For this particular geometry, the value of Y is 1.3. Assuming a design stress of 0.4 times the yield strength, calculate the critical length of a surface flaw. What formulas do i use ? And how do i use them?arrow_forwardAs3arrow_forward
- Example: the low cycle fatigue of a certain steel is given by life cycle equation-2: (ay/E)=0.005 -0.07 b= -0.08 c= -0.7 a. What is the value of the transition fatigue life, in this case 2 N/when EE - Ep b. What is the total strain amplitude at the transition fatigue life?arrow_forward"Torsion Test on Mild Steel"What are the different failure modes of the specimensarrow_forwardFor a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forward
- please send me a solution in detail. Thanks in advancearrow_forwardurgent!arrow_forwardDuring the tensile test a sample of metal having an initial diameter of 2.00 in., is reduced to a 30% reduction in area. If the stress-strain behavior of this metal sample is expressed as o=80,000€ 0.25 psi, determine the new yield strength of the sample.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning