Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 1ETSQ
To determine
The factor which is not used to determine the critical-stress intensity factor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a point on a steel specimen, the principal stresses are known to be 01 = 360
MPa and O2 = 60 MPa. Calculate the minimum yield stress of the material according
to the Tresca criterion. Give your answer in MPa to 3 significant figures.
compare the effect of presence of a notch on ductile and brittle materials in terms of fracture behaviour
3. A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By
monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5
kips and fractured at 17.5 kips.
а.
Determine the tensile stresses at yield and at fracture.
b.
Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge
length
Chapter 11 Solutions
Materials Science And Engineering Properties
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Prob. 12CQCh. 11 - Prob. 13CQCh. 11 - Prob. 14CQCh. 11 - Prob. 15CQCh. 11 - Prob. 16CQCh. 11 - Prob. 17CQCh. 11 - Prob. 18CQCh. 11 - Prob. 19CQCh. 11 - Prob. 20CQCh. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Prob. 25CQCh. 11 - Prob. 26CQCh. 11 - Prob. 27CQCh. 11 - Prob. 28CQCh. 11 - Prob. 29CQCh. 11 - Prob. 30CQCh. 11 - Prob. 1ETSQCh. 11 - Prob. 2ETSQCh. 11 - Prob. 3ETSQCh. 11 - Prob. 4ETSQCh. 11 - Prob. 5ETSQCh. 11 - Prob. 6ETSQCh. 11 - Prob. 7ETSQCh. 11 - Prob. 8ETSQCh. 11 - Prob. 9ETSQCh. 11 - Prob. 10ETSQCh. 11 - Prob. 11.1PCh. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Prob. 11.4PCh. 11 - Prob. 11.5PCh. 11 - Prob. 11.6PCh. 11 - Prob. 11.7PCh. 11 - Prob. 11.8PCh. 11 - Prob. 11.9PCh. 11 - Prob. 11.10PCh. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14P
Knowledge Booster
Similar questions
- 2. Please estimate the number of cycles to failure of a steel specimen under tensile fatigue loading with the following parameters. The R ratio is 3, mean stress 200 MPa, yield strength 450 MPa, ultimate tensile strength 560 MPa, Young’s modulus 200 GPa, KIC = 140 MPa . Assume the initial crack length is 0.1 mm.arrow_forward2. a) As an engineer, choose a desired fracture mode in metals with one (1) reason. b) Sketch the fracture behaviour in metals. c) i. The modulus of elasticity of a metal alloy A is 260 GPa. Compute the specific surface energy if propagation of an internal crack of length 0.40 mm is observed when a stress of 63 MPa is applied to the alloy. ii. The elastic deformation energy of alloy A is 3.0 J/m². Based on the answer obtained in c)(i), show whether alloy A is an elastic deformation or a plastic deformation. iii. Interpret if alloy A can be classified as a brittle or a ductile material. d) i. A metal with an internal crack is loaded with a tensile stress of 15 MPa. If the crack length and the radius of curvature are 2.6 x 10-2 mm and 1.1 x 10-4 mm, compute its maximum stress. ii. The modulus of elasticity of the metal is 90 GPa and the specific surface energy is 2.6 J/m2. Based on its critical stress, show that the crack will not grow when a tensile stress of 15 MPa is loaded on it.arrow_forwardAn aluminium specimen with an initial gauge diameter d, = 10 mm and gauge length, 1, = 100 mm is %3D subjected to tension test. A tensile force P= 50 kN is applied at the ends of the specimen as shown, resulting in an elongation of 1 mm in gauge length. The Poisson's ratio (µ) of the specimen is Take shear modulus of material, G = 25 GPa. Consider engineering stress-strain conditions. Parrow_forward
- Which of the following statements regarding brittle failure and crack propagation is CORRECT? Elastic energy is consumed when a crack propagates, due to unloading of a volume of material. Energy is released when the surface area of a material increases, as a result of crack propagation. O The stress at the tip of a crack is less than the nominal stress (force over the cross-sectional area of the component) because the stress flows around the defect. O The fracture toughness of a material is its resistance to an increase in the radius of curvature of a crack. O A material will fail in brittle fashion when the stress intensity at the crack tip is greater than the fracture toughness of the material.arrow_forward2. The Goodman diagram relates oa and om for fatigue failure after a specific number of cycles N₁, where da is the cyclic stress amplitude, and on the mean stress. For a steel specimen it is found that a = a (0). [1- (om/OTS)] where GTS is the metal's tensile stress (375MPa), and oa (0)~0.450TS is the 107 cycle fatigue limit at zero mean stress. Assuming the specimen is cycled repeatedly between 0 stress and a peak stress, what is the maximum peak stress if failure in < 107 cycles is to be avoided? Ans: 233 MPaarrow_forwardA steel specimen is tested in tension. The specimen is 25 mm wide by 12.5 mm thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 160 kN and fractured at 214 kN. a. Determine the tensile stress at yield and at fracture. b. If the original gauge length was 100 mm, estimate the gauge length when the specimen is stressed to 1/2 the yield stress.arrow_forward
- For a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forward4.17. Simple Tension and compression tests on a brittle material reveal that failure occurs by fracture at o, = 260 MPa and o,` = 420 MPa, respectively. In an actual application, the material is subjected to perpendicular tensile and compressive stresses, oj and o2, respectively, such that o1/02=-1/4. Determine the limiting values of according to (a) the Mohr theory for an ultimate stress in torsion of tu = 175 MPa and (b) the Coulomb-Mohr theory. Hint: For case (a), the circle representing the given loading is drawn by a trail-and-error procedure. 4.18. The state of stress at a point in a cast-iron structure (ơu = 290 MPa, ou` = 650 MPa) is describe by 0,= 0, oy= -180 MPa, and tgy = 200 MPa. Determine whether failure occurs at the point according to (a) the maximum principal stress criterion and (b) the Coulomb-Mohr criterion. 4.20. A piece of chalk of ultimate strength o, is subjected to an axial force producing a tensile stress of 3o/4. Applying the principal stress theory of…arrow_forwardThe (G-E) diagram obtained in the tensile test performed on a metal sample with a diameter of 16 mm is as follows. The loads at points A, B and C and the elongation measured on l. 16 cm gauge length were determined as follows: B A B C Load (kgf) 4800 8400 7200 Elongation (mm) 0.192 28.8 38.4 c) Calculate the fracture work and the maximum elastic energy the metal rod can store. d) Find the cross-sectional area of a 6 m long rod made of this metal such that it can carry 12 tons of load with 2 times the safety of yield strength. How long does the rod extend under this load?arrow_forward
- O (MPa) 80 60 40 20 0.002 0.004 0.006 0.008 0.01 0.012 Figure 3 i) Determine the value of yield strength. ii) Determine the value of ultimate strength. iii) Determine the value of modulus of elasticity iv) If the specimen is loaded to a stress of 65 MPa and then unloaded, determine the residual plastic strain. v) If the diameter of the unloaded specimen is 1 cm and the Poisson's ratio pf the material is v = 0.3, what is the specimen diameter just prior of yield of the tensile specimen? CS Scanned with CamScannerarrow_forwardA load applied to a machine component results in the state of plane stress ?x=80 MPa, ?y=100 MPa, ?xy=60 MPa. The component is made of a brittle high-strength steel that follows the maximum normal stress criterion with ?u=200 MPa. If increasing the load increases each stress component proportionally, determine the percentage increase that can be applied before the component fails.arrow_forwardA brass specimen of the circular cross-section is fractured at 151 kN force and the final length of the specimen at fracture is 49 mm. The fracture strength of the specimen is found to be 74 kN/mm2. The percentage of elongation of the specimen is 42 %. Determine the following (i) Diameter of the specimen ii) Initial length of the specimen iii) Stress under an elastic load of 16 kN iv) Young's Modulus if the elongation is 1.6 mm at 16 kN (v) Final diameter if the percentage of reduction in area is 20 % solve: Initial Cross-sectional Area (in mm2) = The Diameter of the Specimen (in mm) = Initial Length of the Specimen (in mm) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning