
Concept explainers
(a)
The critical crack length for failure of the steel.
(a)

Answer to Problem 11.11P
The critical crack length for failure of the steel is
Explanation of Solution
Given:
Number of cycles is
Stress intensity range is
The critical-stress intensity factor is
Crack growth rate is
Value of
Concept used:
Write the expression for stress intensity range.
Here,
For internal cracks the value of geometrical factor is
Calculation:
Substitute
Calculate the critical length of failure.
Conclusion:
Thus, the critical crack length for failure of the steel is
(b)
The minimum detectable crack length required for non-destructive to guarantee 4000 cycles fatigue life.
(b)

Answer to Problem 11.11P
The minimum detectable crack length required for non-destructive to guarantee 4000 cycles fatigue life is
Explanation of Solution
Concept used:
Write the expression for the number of crack propagation cycle to failure.
Here,
Write the expression for crack growth rate.
Take log on both sides.
The above expression represents a straight line with slope
Calculation:
Substitute
Simplify above expression for
Conclusion:
Thus, the minimum detectable crack length required for non-destructive to guarantee 4000 cycles fatigue life is
Want to see more full solutions like this?
Chapter 11 Solutions
Materials Science And Engineering Properties
- 6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forwardProblem 5 (A, B, C and D are fixed). Find the reactions at A and D 8 k B 15 ft A -20 ft C 10 ft Darrow_forwardProblem 4 (A, B, E, D and F are all pin connected and C is fixed) Find the reactions at A, D and F 8 m B 6m E 12 kN D F 4 marrow_forward
- Problem 1 (A, C and D are pins) Find the reactions and A, C and D. D 6 m B 12 kN/m 8 m A C 6 marrow_forwardUniform Grade of Pipe Station of Point A is 9+50.00. Elevation Point A = 250.75.Station of Point B is 13+75.00. Elevation Point B = 244.10 1) Calculate flowline of pipe elevations at every 50 ft. interval (Half Station). 2) Tabulate station and elevation for each station like shown on example 3) Draw Sketcharrow_forward40m 150N B 40marrow_forward
- Note: Please accurately answer it!. I'll give it a thumbs up or down based on the answer quality and precision. Question: What is the group name of Sample B in problem 3 from the image?. By also using the ASTM flow chart!. This unit is soil mechanics btwarrow_forwardPick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI = 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-ht. 95.0 200m 600m PLD-M. 91.0 300m Pt. C-93.0 300m PL.B-ht. 92.0 PL.F-ht. 96.0 500m Pt. A-M. 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100 must be shown.arrow_forwardQUANTITY SURVEYINGarrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
