Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
Question
Book Icon
Chapter 11, Problem 1CQ
To determine

The characteristic of material if it breaks without plastic strain.

Expert Solution & Answer
Check Mark

Answer to Problem 1CQ

The material is brittle, if it breaks without plastic strain.

Explanation of Solution

When stress is applied to the specimen it deforms and changes its shape. The ratio of change in dimension to the original dimension is known as strain. The strain in material increases with the increase in stress.

The relationship between stress and strain is linear up to a point known as proportional limit after this limit the material deforms plastically. In plastic deformation the original dimensions of component cannot be achieve after removal of force.

The Brittle materials are the materials having no ductility and fails with very small deformation by application of stress. The brittle fracture if material separates or breaks the material into several distinguishable parts.

Conclusion:

Thus, the material is brittle, if it breaks without plastic strain.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A double-T simply supported concrete beam its cross section is shown in Figure, is prestressed with 2 tendons each 400 mm². Determine the allowable service load. Use span 12 m, fse = 1300 MPa, fc = 40 MPa, y = 25 kN/m³. = 1200 mm >09< *100* As = 400 +100+ As = 400 400 1400+
A prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center line of the flanges and initially stressed to 850 N/mm². The beam is required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the total prestressing wires area required. Ignore prestressing force losses in your answer. (Ye kN/m³). = 24 2As 400 As 80 80; 750
A simply supported rectangular prestressed concrete beam, of span 13 m and its cross section as shown in figure, is carrying a live load equals to 30 kN/m in addition to its weight, compute the following stresses and compare it with ACI allowable stress: a) Bottom fiber stress at support in initial stage. b) Top fiber stress at mid span in final stage. Use y = 24 kN/m³, As = 600 mm², initial stress of the prestressed steel = 1200 MPa, total losses is 20%, fci = 22 MPa, and fo' = 28 MPa 800 mm 3 As 400 mm As 340 mm 340 mm
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning